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Abstract

The dynamics of pure, electron plasmas confined in cylindrically symmetric,

Malmberg-Penning traps are strongly affected by imperfections in the trap fields

and collisions with background gas molecules present in the vacuum. These im-

perfections in the trap torque the azimuthally rotating plasma, causing it to expand

radially.

The Electron Diffusion Gauge (EDG) device is used to determine whether the

effects of background gas on an electron plasma can be quantitatively predicted

and used to calibrate ionization gauges, the standard equipment for measuring

gas pressure in the ultra-high-vacuum (UHV) regime. Earlier studies of EDG plas-

mas in this regime suggested that the plasma expansion is primarily due to field

imperfections rather than interaction with the background gas (primarily helium),

and that an observed damping of the m = 1 diocotron mode is more sensitive

to the gas pressure. Recent measurements indicate that m = 1 diocotron mode

growth observed at high electron-source heating voltages can be much more sen-

sitive to other components of the background gas than the mode damping is to

helium. It appears likely that ions unintentionally produced in the electron source

are traversing the plasma and causing the destabilization, and that quantitative

prediction of this effect will be difficult.
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At higher (HV) background gas pressures, the plasma expansion rate has been

observed to agree with the theoretical expansion rate predicted with a fluid de-

scription of the plasma that includes elastic collisions with background gas

molecules. This agreement is impressive because the model describes uniform-

temperature plasmas, and the plasmas in EDG do not necessarily have uniform

temperatures at HV pressures. Greatly improved measurements of the plasmas’

radial density profiles and new measurements of the on-axis plasma temperature

indicate that the majority of these plasmas do not have thermal, quasi-equilibrium

density profiles initially. Measurements later in the UHV-pressure evolution of

thermal quasi-equilibrium plasmas reveal that expansion due to field imperfec-

tions is a factor of four lower than that estimated previously. Non-increasing tem-

peratures measured during this later part of the evolution further suggest that the

plasma is indeed losing the electrostatic potential energy liberated by the expan-

sion, presumably through inelastic collisions with impurities in the background

gas.
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Chapter 1

Introduction

Pure, electron plasmas are trapped in the Electron Diffusion Gauge (EDG) de-

vice [CHAO et al., 2000, 1999b; MORRISON et al., 2002; PAUL et al., 2002; MORRISON

et al., 2001] in order to study the effects that background gases have on the elec-

tron plasma dynamics. The EDG device is a cylindrically symmetric, Malmberg-

Penning trap (see section 2.1 and Fig. 2.1) [DEGRASSIE and MALMBERG, 1977;

O’NEIL, 1995; GOULD, 1995; DRISCOLL et al., 2002; ANDEREGG et al., 2003; BOLLINGER

et al., 2003; GREAVES and SURKO, 2002; FAJANS et al., 2000] with inner radius Rw =

2.54 cm. Malmberg-Penning traps have a uniform magnetic field parallel to the

common axis of multiple, cylindrical electrodes, and particles with the same sign

of charge can be confined between two nonadjacent electrodes that are charged to

a sufficiently high voltage.

1
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1.1 Non-Neutral Plasmas

Non-neutral plasmas in Malmberg-Penning traps such as EDG have been in-

tensely studied for decades [DEGRASSIE and MALMBERG, 1977; ROBERSON and

DRISCOLL, 1988; FAJANS and DUBIN, 1995; BOLLINGER et al., 1999; ANDEREGG

et al., 2002b; SCHAUER et al., 2003], and similar traps have been used to make

atomic clocks [BOLLINGER et al., 1985, 1994; TAN et al., 1995; FISK, 1997],

antihydrogen-forming apparatuses [AMORETTI et al., 2002, 2003a; FUJIWARA et al.,

2001; GABRIELSE et al., 2002], and cold-positron-beam sources [GREAVES et al.,

2002; GREAVES and SURKO, 2002; KURZ et al., 1998; SURKO et al., 2000]. Non-

neutral plasmas are plasmas where there are appreciably more particles with one

sign of charge than with the other (e.g., many more electrons than hydrogen ions),

though most of the non-neutral plasmas studied have only one charged species

(electrons, in EDG). These plasmas are similar to neutral plasmas in that they can

exclude externally produced electric fields from their interior and support waves

that are analogous to neutral-plasma waves where positive ion motion is not im-

portant. In fact, the dielectric function for magnetized, non-neutral plasmas is

remarkably similar to that for magnetized, neutral plasmas, and many neutral-

plasma waves and instabilities can be identified directly for non-neutral, electron

plasmas in Malmberg-Penning traps by applying the mapping [DAVIDSON and

KRALL, 1969, 1970]

mp → ∞ (1.1)

ω → ω − lωr (1.2)

Ωc → Ωc

(
1−

2ω2
p

Ω2
c

)1/2

(1.3)
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to the neutral-plasma dispersion relation, where mp is the mass of any positive ion

in the plasma, ω is the frequency of the wave, l is the azimuthal mode number, ωr is

the plasma’s equilibrium azimuthal rotation frequency, Ωc is the electron cyclotron

frequency, and ωp is the electron plasma frequency.

There are important differences between non-neutral plasmas and neutral plas-

mas, however. Non-neutral plasmas have large, self-generated, equilibrium elec-

tric fields since they have a net charge, and accordingly rotate in the particles’

E × B drift direction (at the rotation frequency ωr) when confined by a magnetic

field. Non-neutral plasmas made of particle species with the same charge sign

(all positive ions or all negative ions) do not experience ambipolar diffusion, and

can reach a thermal, quasi-equilibrium state (section 3.2) if they are not in contact

with the trap electrodes and various sources of plasma instability are suppressed.

Accordingly, non-neutral plasmas are extremely well confined, persisting in traps

for tens of seconds without significant charge loss (using static trap fields) and

for weeks with the addition of a small, oscillating electric field perturbation to the

trap [HUANG et al., 1997]. A substantial amount of effort has been made to under-

stand the transport processes in non-neutral plasmas (see section 3.1.2) so they can

be compared to the transport in neutral plasmas. Most notably, long-range “col-

lisions” have been identified (between particles more than two particle gyroradii

apart but less than a Debye length apart) that enhance the energy transport in these

plasmas above the classically predicted amount.
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1.2 The Electron Diffusion Gauge Experiment

The Electron Diffusion Gauge (EDG) is an experimental facility for exploring

the possibility of using the dynamics of non-neutral plasmas in Malmberg-Penning

traps as a pressure standard for ultra-high vacuum systems. Elastic collisions be-

tween plasma electrons and background gas molecules are both predicted [DAVID-

SON and MOORE, 1996; DOUGLAS and O’NEIL, 1978] and measured [CHAO et al.,

2000; MALMBERG and DRISCOLL, 1980; DEGRASSIE and MALMBERG, 1980] to cause

the plasma to expand radially in the trap, so measurements of the amount of

plasma expansion might allow absolute determinations of the gas pressure in the

UHV regime. The EDG device was built [MOORE, 1995] with a density diagnos-

tic for measuring the axially integrated, radial density profile of the plasma and a

leak valve to add helium gas into the trap for pressure control. Data from that orig-

inal, Faraday-cup density diagnostic in EDG was used [CHAO, 1999] to carefully

characterize the plasma formation, numerically reconstruct the electron density

distribution in the trap, follow the evolutions of the plasma temperature inferred

from the shape of the density profile and the estimated electrostatic potential en-

ergy, and to determine the expansion rate of the plasma. The plasma expansion

rate as a function of pressure was also measured previously (Fig. 4.5) [CHAO et al.,

2000], and seen to be insensitive to the background gas pressure below a pressure

of P ∼ 1 × 10−8 Torr. This finding agreed with earlier particle transport mea-

surements where imperfections in the trap fields produced a minimum level of

transport at the lowest gas pressures [MALMBERG and DRISCOLL, 1980].

Theoretical results additionally suggested that estimates of the electron-neutral

collision frequency (and therefore the background gas pressure) could be obtained
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non-destructively from measurements of the m = 1 diocotron mode’s growth

[DAVIDSON and CHAO, 1996b]. For the previous thesis research on EDG [CHAO,

1999], a diagnostic was built to measure the mode evolution. The mode frequency,

the frequency shifts for large-amplitude modes, and the instability produced by

resistive trap electrodes, which were predicted and verified in other experiments,

were all reproduced in EDG (section 5.1) [CHAO et al., 2000, 1999c]. An addi-

tional, unexplained “anomalous” damping of the m = 1 mode that is stronger

with increased electron density and decreased magnetic field was also character-

ized (Fig. 5.5) [CHAO et al., 1999c], and the trap parameters were chosen in such

a way to minimize it. The evolution of the m = 1 mode as a function of pressure

was then observed [CHAO et al., 2000] to damp more strongly with increased back-

ground gas pressure (Fig. 5.10). This damping was sensitive to pressure changes as

small as ∆P ≈ 5×10−10 Torr, making the use of this phenomenon to sense changes

in the background gas pressure a promising approach.

1.3 Motivation

Several interesting gaps in the understanding of EDG plasma dynamics were

revealed by the previous measurements (section 1.2). Firstly, the plasma expansion

rates measured as a function of pressure seemed to indicate that the expansion

caused by electron-neutral collisions was a factor of two to four times faster than

that predicted theoretically for plasmas in thermal quasi-equilibrium [DAVIDSON

and MOORE, 1996]. Secondly, the temperatures inferred by fitting the measured

density profiles with predicted, thermal quasi-equilibrium density profiles did not

increase as the plasma expanded and electrostatic potential energy was liberated.
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Thirdly, while the existence of a minimum level of expansion at the lowest gas pres-

sures is consistent with other experiments, the causes of the minimum expansion

at the lowest gas pressures in EDG were largely unknown. More detailed density

and temperature measurements are necessary to explain these effects and to pro-

vide confidence in the previously reported expansion rates and m = 1 diocotron

mode measurements. A knowledge of the background gas composition is also nec-

essary to confirm that impurities in the background gas mixture are responsible for

the energy loss from the plasma.

The previously measured dependence of the m = 1 diocotron mode damping

on background gas pressure [CHAO et al., 2000] was encouraging for the devel-

opment of a pressure standard, and an investigation into its cause is necessary to

produce a useful, theoretical description. The most obvious course of action is to

install a smaller electron source, which provides insight into whether the mode

damping is effected by plasma interaction with the trap electrodes. If it is, the trap

electrode interaction might also explain the “anomalous” damping mentioned in

section 1.2, as the plasma should expand more quickly for the conditions favoring

the mode damping and make contact with the trap electrodes sooner. It is not im-

mediately clear that interaction with the electrodes is the mechanism responsible,

however, because the mode frequencies were quite constant during the pressure-

dependent mode damping, [CHAO et al., 2000] indicating that very few electrons

were being lost to the trap electrodes.

The disagreement of the m = 1 diocotron mode resistive-electrode growth

rate measurements with the theoretical prediction at high resistance (see Fig. 5.2)

[CHAO et al., 2000] could also be investigated to see whether the effect is due to

some imperfections in the electronics systems or a true plasma effect, such as the
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distortion of the plasma by an effectively charged trap electrode segment. The de-

pendence of the diocotron mode frequency on the plasma radius and temperature

has also not been characterized, and could be important since the plasma can ex-

pand a substantial amount during the long diocotron mode evolutions (see chapter

4).

1.4 Thesis Overview

In this thesis research, further detailed measurements have been performed

to increase our understanding of the effects that the background gas has on the

plasma dynamics. New density and temperature diagnostics were constructed

and installed to improve measurement of the plasma expansion and them = 1 dio-

cotron mode evolution to further this effort. The principal results of this work are

the following: 1. the expansion of EDG plasmas due to the influence of background

gas molecules at HV pressures is shown to agree with the predictions from a fluid

description of the plasma designed for UHV pressures, 2. the measured plasma

temperature is shown to not increase after an initial relaxation of the plasma, sug-

gesting that impurities in the background gas are draining energy from the plas-

mas, and 3. ions unintentionally produced by the electron source appear to be the

cause of pressure- and filament-voltage-dependentm = 1 diocotron mode growth.

Chapter 2 describes the Electron Diffusion Gauge device used to trap the plas-

mas and the diagnostic equipment used to make the measurements. The way that

the plasmas are trapped is described, followed by a review of the simple potential-

matching rules that give an estimate for the initial plasma radius from the electron

source voltages. Next, the original, Faraday-cup density diagnostic and the new,
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phosphor-screen density diagnostic used to make radial density profile measure-

ments are described. The bulk of the expansion rate measurements were made

with the Faraday-cup density diagnostic, which requires the trapping of many

plasmas with excellent shot-to-shot reproducibility to produce a single, axially in-

tegrated, radial electron density profile. This diagnostic was recently replaced with

the more sophisticated phosphor-screen density diagnostic, which can measure an

entire, 2-D, axially integrated density profile for a single plasma. This diagnostic

allows reliable measurement of density profiles for plasmas that have been held

in the trap for much longer than one second, as well as for plasmas that have siz-

able azimuthal perturbations or are offset from the trap axis, and has thus allowed

a much better understanding of the EDG plasma. Plasma temperature diagnos-

tics important for determining the energy evolution in the plasma are described

next. The temperature is diagnosed both by direct measurements of the paral-

lel temperature at r = 0 and by inferring an effective perpendicular temperature

by fitting a theoretical, thermal quasi-equilibrium density profile to the measured

density profiles. The measurement of the m = 1 diocotron mode (as well as any

odd-numbered, azimuthal surface wave in the plasma) with an azimuthally dis-

continuous electrode segment is explained next, followed by an overview of the

remaining device systems (such as the solenoid used to create the magnetic field

and the vacuum pumping system).

Chapter 3 of this thesis contains a review of the current theoretical and experi-

mental understanding of electron plasmas similar to those in EDG. First, the tradi-

tional explanation for the exceptionally good confinement in non-neutral plasmas

is presented, which invokes conservation of total canonical angular momentum.
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The various particle and energy transport processes that allow non-neutral plas-

mas to reach thermal equilibrium are explained next, including the prior finding

that energy can be exchanged over longer distances in these low-density plasmas

than in typical laboratory plasmas because the Debye length is greater than the

characteristic particle gyroradius (λD > rL). Several quantities calculated for ther-

mal equilibrium plasmas and the way that these quantities are modified by the

presence of background gas molecules are then described; if the plasma expan-

sion due to the background gas molecules is slow enough, the plasma can remain

thermalized and slowly expand while maintaining a thermal quasi-equilibrium.

The effects that imperfections in the trap fields and high background gas pressures

have on the plasma dynamics is also discussed. Lastly, the observed and predicted

dynamics of the m = 1 diocotron mode, a common, electrostatic, surface wave in

Malmberg-Penning trap plasmas, are outlined.

Chapter 4 describes the plasma expansion and temperature evolution measure-

ments for EDG plasmas. After an explanation of the mean-square radius and

expansion rate calculation algorithms, measurements of the expansion rate de-

pendence on pressure that show agreement with the predicted rate for uniform-

temperature plasmas are presented. Further expansion rate measurements for ini-

tially smaller plasmas are also presented that confirm the observed agreement.

More recent measurements using the phosphor screen density diagnostic suggest

that all of these measurements were performed on plasmas that were not in a

thermal quasi-equilibrium state. Specifically, the plasma expansion after an initial

relaxation (apparently to thermal quasi-equilibrium) indicates that the minimum

level of plasma expansion due to trap field asymmetries is at least four times less
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than was previously thought. Measurements with the r = 0 temperature diag-

nostic are presented which support the hypothesis that the plasma takes at least

one second to reach thermal quasi-equilibrium, but also indicate that the plasma

temperature is not increasing once the plasma has attained a quasi-equilibrium

state, even though the plasma continues to expand. This result is thought to in-

dicate that the plasma is indeed losing energy continuously, presumably through

inelastic collisions with impurities in the background gas.

Chapter 5 addresses the dynamics of the m = 1 diocotron mode in the EDG

device. First, the previous verification that the mode frequency and instability due

to resistive trap electrodes in EDG agree with prior experiments is reviewed, and

the previous measurements of an additional, “anomalous” damping that is de-

pendent on the plasma line density and magnetic field are described. Next, new

measurements of the mode’s sensitivity to the heating voltage and bias voltage

on the electron source’s filament are presented. The plasma is seen to grow as

strongly at higher filament heating voltages as it does in the presence of resistive

trap electrodes, and this mode growth is shown to be sensitive to the background

gas pressure below P ≈ 1 × 10−9 Torr. Measurements of ions inadvertently pro-

duced by the electron source are then presented which exhibit notable similarity to

the mode growth rate dependences on source-filament voltages and pressure, sug-

gesting that the new mode growth is due to the interaction between the plasma

and these ions as they travel through the trap axially.

Finally, Chapter 6 summarizes the conclusions drawn from the new measure-

ments and the previous understanding of EDG plasma dynamics. Specific oppor-

tunities to enhance this understanding with further measurements and diagnostic

improvements are included.



Chapter 2

Experimental Apparatus

In this chapter, the Electron Diffusion Gauge experimental apparatus is de-

scribed. Section 2.1 gives a general overview of the device’s operation, section 2.2

describes the original and new diagnostics for measuring the radial electron den-

sity profile, section 2.3 describes the techniques for inferring the perpendicular

electron temperature from the measured density profiles and measuring the par-

allel temperature at r = 0, section 2.4 describes the measurement of electrostatic

surface waves in the plasma, and section 2.5 includes additional details about the

device that are not directly diagnostic-relevant.

2.1 The Electron Diffusion Gauge device

The Electron Diffusion Gauge (EDG) device is a Malmberg-Penning trap [DE-

GRASSIE and MALMBERG, 1977; O’NEIL, 1995; GOULD, 1995; DRISCOLL et al., 2002;

ANDEREGG et al., 2003; BOLLINGER et al., 2003; GREAVES and SURKO, 2002; FAJANS

11
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et al., 2000; DAVIDSON, 1990]. Malmberg-Penning traps (see Fig. 2.1) are cylindri-

cally symmetric, use a uniform, axial magnetic field to confine particles radially,

and use charged, cylindrical electrodes to confine particles axially. Naturally, they

are designed to confine only particles with the same sign of charge as the voltage

on the confining electrodes. To trap an electron plasma, the charged electrode near

the electron source (electrode 1) is temporarily set to zero Volts, allowing electrons

to flow into the trap along the magnetic field. Once the trap is sufficiently full, that

electrode is charged again to trap the electrons (inside grounded electrodes 2–5),

where they quickly form a non-neutral plasma. To release the plasma (for diagnos-

tic purposes), the far electrode (electrode 6) is set to zero Volts, and the electrons

flow out of the trap towards the detectors.

The EDG device [CHAO et al., 2000; MORRISON et al., 2001] has diagnostics that

can destructively measure the total number of electrons in the plasma, destruc-

tively measure the axially integrated number of electrons at a particular radial and

azimuthal location, non-destructively measure the amplitude and frequency of the

m = 1 diocotron mode as a function of time, and destructively measure the on-axis

electron temperature for plasmas with a negligible diocotron mode amplitude. Be-

cause most of the diagnostics require the destruction of the plasma, it is important

that these plasmas are highly reproducible. Typical EDG plasma parameters are

listed in Table 2.1.

The EDG device (Figures 2.2–2.4) was constructed by Dr. David Moore [MOORE,

1995] and extensively modified by Dr. Edward Chao [CHAO, 1999] and Dr. Stephen

Paul. A detailed description of the device’s hardware and the original diagnostic
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Figure 2.1: Malmberg-Penning trap geometry.

set is presented in Dr. Chao’s thesis [CHAO, 1999], and a brief description of the de-

vice and the details of the new density and temperature diagnostics are presented

in this chapter.

2.1.1 Filament-Matching Criterion

The electron source in EDG is a spiral, 2% thoriated tungsten filament (Fig. 2.5)

that is resistively heated across its leads and biased at its center to induce emission

of electrons [MALMBERG and DEGRASSIE, 1975]. The electric field between the bi-

ased filament and a parallel, grounded, stainless steel wire grid just 1.0 cm closer

to the trap electrodes (Fig. 2.6) causes many thermionically emitted electrons to en-

ter the trap. For sufficiently high filament temperatures, the flow of electrons into

the trap at a given filament bias voltage behaves as though it were space-charge-

limited and is less sensitive to changes in the temperature-dependent emission

at the filament’s surface. The filament may also be heat-treated to migrate tho-

rium (Th) atoms to its surface for better emission by first applying a high current

[LANGMUIR, 1923; JONES and LANGMUIR, 1927] to break apart the thoria (ThO2)
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Figure 2.2: Cut-away schematic of the EDG device.
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Figure 2.3: Trap electrodes and filament assembly.

Figure 2.4: Side view of the EDG device.
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Quantity Symbol Characteristic value

Background gas pressure P 1× 10−10 – 1× 10−5 Torr
Electron temperature T 1 eV
Magnetic field imposed B 600 G
Total number of electrons N 5× 108 electrons
Plasma length Lp 15 cm
Plasma radius Rp(t = 0) 0.87 cm (sm. fil.) and

1.27 cm (large fil.)
Density on-axis n(r = 0) 1.15× 107 /cm3

Plasma line density NL 3.3× 107 electrons/cm
Electron thermal velocity vT 4.2× 107 cm/s
Plasma frequency ωp/2π 30 MHz
Cyclotron frequency ωc/2π 1.7 GHz
Plasma rotation frequency ωr/2π 290 kHz
Axial bounce frequency ωb/2π 1.4 MHz
m = 1 Diocotron mode frequency ωD/2π 40 kHz
Electron-electron collision frequency νee 200 Hz
Electron-neutral collision frequency νen 0.15 – 1.5× 104 Hz
Electron gyroradius rL 0.04 mm
Debye length λD 0.21 cm
Confining voltage φconfining(r = 0) −129 V
Plasma potential on-axis φplasma(r = 0) −15 V

Table 2.1: Characteristic EDG plasma parameters. The plasma line density NL is
the number of electrons per unit axial distance.
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Figure 2.5: One of the small filaments used in EDG.

Figure 2.6: View of a small filament mounted in EDG. The front end of the trap is
barely visible at the top of the image, the grid above the filament is set to zero volts
to encourage electron emission, and the grid below is electrically connected to the
center of the filament, which is biased to the filament bias voltage Vb.
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molecules (21A for ∼ 30 seconds for a 0.02-inch-diameter tungsten wire) and sec-

ondly applying a lower current to migrate the thorium atoms through the metal

(12A for ∼ 20 minutes). Recently, however, this has not reliably produced larger,

more consistent emission than has simply heat-treating at the lower current (pos-

sibly due to aging of the filaments). Once the trap is filled, the confining electrode

on the filament side of the trap (the “entrance” electrode, electrode 1) is negatively

charged and no additional electrons flow into the trap.

When the emission from the filament appears space-charge-limited, the result-

ing plasma radius for a constant density plasma may be estimated [MALMBERG

and DEGRASSIE, 1975] by equating the radial potential variation on the filament

and the radial potential variation in the plasma. This “filament-matching crite-

rion” results in the equation

Vb
Vh

=
R2
p

R2
f

(
−2 ln

(
R2
p

R2
f

)
+ 2 ln

(
R2
w

R2
f

)
+ 1

)
, or (2.1)

Y = X2 (−2 lnX + 2 lnA+ 1) , (2.2)

where Vb is the voltage applied to the center of the filament for biasing, Vh is

the voltage applied across the filament for heating, Rp is the predicted uniform-

density-plasma radius, Rf is the filament’s outer radius, Rw is the inner radius of

the trap electrodes, Y = Vb/Vh, X = Rp/Rf , and A = Rw/Rf . This equation can be

used to estimate the initial plasma radius for a given set of filament voltages, and

predicts the plasma’s axial line density to be

2π
∫ Rw

0
r dr n(r, z) ≡ NL = X2 (NL)max , (2.3)

where

(NL)max = Vh/e (2.4)
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Figure 2.7: Plot of line density NL ≈ N/Lp versus the ratio Vb/Vh for a Rf = 0.635
cm filament. The line density is estimated by dividing the measured total plasma
charge N by the typical plasma length Lp found in an equilibrium code (which is
mentioned in section 4.1). The data appear consistent with the filament-matching
condition in Eq. (2.1) for the parameter A = Rw/Rf = 3 instead of the predicted
A = 4. A similar enhancement was seen for large-filament plasmas (A = 1.75 in-
stead ofA = 2) [CHAO, 1999], and the higher line density was thought to be caused
by axial compression of the trapped electron cloud as the voltage on electrode 1 is
lowered (to “close” the trap).

and e is the charge of an electron. The total number of electrons in the plasma

measured as a function of Vb/Vh is compared with this estimate in Fig. 2.7 for a

filament with Rf = 0.635 cm (1/4 inch). When the ratio Vb/Vh increases past the

point where NL/(NL)max = 1, the simple filament-matching criteria is no longer

valid, and the plasma radius is approximated as the filament radius (Rp = Rf ) for

further calculations. A more sophisticated, 1-D model of the initial plasma density
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distribution which extends to this regime, incorporates the electron temperature,

and allows the description of non-uniform electron emission over the filament sur-

face was developed by Kriesel and Driscoll [KRIESEL and DRISCOLL, 1998]. This

model was not applied to EDG plasmas because of difficulties in measuring the

temperature and the electron emission.

Two different sizes of filaments were used for this research: Rf = 1.27 cm

(large) and Rf = 0.635 cm (small).

2.2 Electron Density Measurement

Since EDG pure-electron plasmas have a relatively low density (n ∼ 1×107/cm3)

in comparison with typical laboratory plasmas, conventional Langmuir probes

can’t be used to measure the plasma density or temperature. The electron den-

sity and temperature are instead measured by releasing the entire plasma from

the trap into detectors located just outside the trap axially. The evolution of the

plasma for a given set of conditions is then inferred by comparing measurements

of similar plasmas that were confined in the trap for different amounts of time. The

standard deviation of the total plasma charge measured under identical conditions

is usually less than 0.2%, indicating that the plasmas are highly reproducible.

Two different diagnostics were used for measuring the radial electron density

profile in this research: the radially scanning Faraday-cup density diagnostic for

the earlier data, and the phosphor-screen density diagnostic for the most recent

data.
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Figure 2.8: Trap-side view of the Faraday-cup density diagnostic collimating plate.

2.2.1 Radially Scanning Faraday-Cup Density Diagnostic

The radially scanning, Faraday-cup density diagnostic (Figures 2.8–2.9) was

previously used to obtain radial density profiles in the EDG device [CHAO, 1999]

by methodically measuring the number of electrons in the trap near particular ra-

dial and azimuthal locations; a density profile could be accumulated by trapping

several plasmas at the same trap conditions and making measurements t different

radii. After a plasma was released, it would first encounter a collimating plate

with a small hole [Figures 2.10(a), 2.8] that selected the axial column of electrons

to measure. Next, most of the electrons that passed through the hole would pass

through an identical hole in a separate plate [Fig. 2.10(b)] behind the collimating

plate. Finally, the electrons that passed through both plates would alight upon an

additional measurement electrode behind them [Fig. 2.10(c)].

Approximate, axially integrated density profiles were constructed by moving

the collector assembly radially between measurements to observe the number of
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Figure 2.9: Rear view of the Faraday-cup density diagnostic.

electrons at different radii. This process could be performed at different times in

the plasma evolution (“hold times”) to measure the change in the density profile.

Profiles obtained with this diagnostic are presented in Figures 2.11(b) and 2.11(c),

along with an illustrative profile obtained with the phosphor-screen density diag-

nostic in Fig. 2.11(a).

The total number of electrons (“total charge”) in any given plasma was deter-

mined by summing the amounts of charge collected by the collimating plate and

the second measurement electrode. The signal from the collimating plate (the “to-

tal collector”) was calibrated by setting all cylindrical trap electrodes to zero Volts

and measuring the the changing voltage on the plate as electrons from the fila-

ment flowed directly onto it. The detector capacitance was then determined to be

C = Itc/(dVtc/dt), where Itc is the current reaching the plate and Vtc is the voltage

on the plate. The signals from the measurement electrode (the “local collector”, in
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(a) Total Collector. (b) Capacitive shield.

(c) Local Collector.

Figure 2.10: Faraday-cup density diagnostic electrodes.
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(b) Faraday-cup-derived profile (small
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(c) Faraday-cup-derived profile (large fil-
ament).

Figure 2.11: Figure 2.11(a) shows an illustrative image-derived density profile over-
laid with a thermal quasi-equilibrium profile, obtained using the CCD camera and
a small tungsten filament. Figure 2.11(b) shows an example of data obtained with
the Faraday-cup density diagnostic, also for a small filament. Figure 2.11(c) is an
example of the profiles obtained using the Faraday-cup diagnostic to observe a
plasma formed with a large filament. The small features in the density data in
Fig. 2.11(a) for r < 0.2Rw vary for different images (e.g., see Fig. 4.1), and are
thought to be simply due to noise in the images. The off-axis peak in the density
profile in Fig. 2.11(b) is thought to be due to uncorrectable misalignment of the
diagnostic with the trap.
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Fig. 2.10(c)) were calibrated by correlating them with the signals from the collimat-

ing plate at several radii; electrons that do not hit the total collector or the second

plate behind it should hit the local collector, and the correlation can be seen by

moving the collector assembly radially across the plasma cross section. The sec-

ond plate (the “capacitive shield”) was included to reduce the capacitive coupling

between the collimating plate and the measurement electrode. For this calibration,

we did not account for any electrons intercepted by the capacitive shield.

Even after this careful calibration of the local collector, the integral of the axially

integrated density profile generally does not agree with the calculated total charge.

This has been attributed [CHAO, 1999] in part to changes in the effective collimat-

ing hole radius due to finite electron gyroradii; roughly, the electrons within a

gyroradius of the hole’s edge could be collected by the total collector or the ca-

pacitive shield instead of the local collector. Misalignment of the magnetic field

with the trap, misalignment of the local collector with the trap axis, and poten-

tially unequal radial steps taken by the local collector due to imperfections in the

linear motion feedthrough could also contribute to the discrepancy. This disagree-

ment is circumvented for analysis purposes by normalizing the measured axially

integrated density profile so its integral agrees with the total charge measured.

The collimating plate was biased to +15 V and the local collector electrode was

biased to +23 V to ensure that all the incident electrons would be collected. This

is especially important because they are both made of aluminum, which tends to

reflect a fair fraction of low energy, incident electrons. The power supplies that bi-

ased the measurement electrodes were disconnected during the density measure-

ments to reduce noise, but the capacitive shield was connected to 0. V (grounded)
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continuously. The collimating hole is 0.159 cm in diameter, which, in fact, is a size-

able fraction of the plasma cross section for small-filament plasmas. The plasma

was trapped between electrodes 1 and 6 (see Fig. 2.2) to reduce the capacitive cou-

pling between the collimating plate and the confining electrode. At least five mea-

surements were made at each radial position to reduce the effects of noise on the

resulting density profile.

2.2.2 Phosphor-Screen Density Diagnostic

The phosphor-screen density diagnostic records an entire axially integrated,

2-D density profile for a single plasma. It allows reliable measurement of density

profiles for plasmas with large-amplitude diocotron modes and plasmas that have

been held in the trap much longer than 1 second. It was designed, assembled, and

tested primarily by Dr. Stephen Paul, based upon information about similar diag-

nostics already in operation [GILSON, 2001; PEURRUNG and FAJANS, 1993; HUANG

et al., 1995; FINE et al., 1995].

Phosphor-Screen Density Diagnostic Description

To make a density measurement, the plasma is released from the trap and ac-

celerated into a 10 µm-thick P-43 phosphor coating on a glass screen (Figures 2.12

and 2.13). The phosphor scintillates where it is struck by electrons, and the glowing

image of the axially integrated plasma is captured by a CCD camera. The digital

image is saved, and an axially integrated radial density profile is determined by

averaging the plasma image azimuthally around its centroid.

The light emitted by the phosphor passes through the glass screen, a glass vac-

uum window, an interference filter tuned near to the peak emission wavelength of
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Figure 2.12: The phosphor screen in its machinable-ceramic mount. This side faces
the plasma.

the P-43 phosphor (545 nm), an f=1.5 camera lens, and a separate image intensi-

fier on its way to the CCD camera (Fig. 2.15). Another ∼ 50 nm-thick aluminum

coating covering the phosphor reflects nearly all of the light emitted from the fil-

ament and serves as an electrode for accelerating the electrons. Additional light

baffles (Fig. 2.14) behind the screen reduce the amount of reflected filament light

illuminating the back of the screen or entering the camera directly.

The aluminum coating is biased to Vs = 3–5 kV to give the electrons sufficient

energy to penetrate the aluminum and excite the phosphor underneath (Fig. 2.13).

A grounded, 95% transparent, electroformed copper grid is affixed to the end of

the trap to produce a more uniform accelerating electric field (Fig. 2.16). Putting

this grid in the path of the escaping plasma has the detrimental effects of focusing

(or defocusing) some of the plasma electrons into (or away from) a grid pattern

on the screen and absorbing some of the plasma electrons before they reach the
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Figure 2.13: The back side of the phosphor screen that the CCD camera sees. This
picture was taken before the light baffle in Fig. 2.14 was installed.

Figure 2.14: This light baffle was mounted roughly 1 inch behind the phosphor
screen to block stray filament light. The inside faces of the grooves in its surface
are perpendicular to its base to reduce the light reflected inwards towards the back
of the phosphor screen. The offset hole in the baffle ensures a safe distance be-
tween the grounded baffle and the bias wire to the 3–5 kV phosphor screen, seen
in Fig. 2.13.
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Figure 2.15: The black CCD camera assembly is supported by a tripod mount un-
derneath so the camera can be rotated or pitched to better view the screen. The
camera is the black box at the bottom with white writing on the sides, the white
power cord on the right is plugged into the image intensifier, the camera lens is
in the segment with a knurled grip (just past the segment with a protrusion to the
left), and the interference filter is cemented near the base of the flared segment at
the far end of the assembly (next to the vacuum window). The phosphor screen
itself is just inside the near end of the solenoid coils at the top of the photograph.
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Figure 2.16: View of the phosphor-screen acceleration grid, which is mounted on
the last trap electrode.

screen. Whether the electrons are focused, defocused, or indeterminately focused

by the grid is dependent on the magnitude of the magnetic field, and the electrons

appear alternately focused and defocused as the field is increased. The focused-

electron patterns seen for typical EDG operating conditions are readily eliminated

by masking out the peaks corresponding to the grid wire spacing in the Fourier

transform of the image. The results of this FFT-masking procedure are illustrated

in Fig. 2.17.

The radial image profile c(r) is then calculated as medians c(rn) of the image

values between the distances rn = n δr and rn+1 = (n + 1) δr from the image

centroid for all r ≤ Rw, where δr is the distance on the screen that corresponds

to the width of one camera pixel, r is measured from the centroid of the plasma

image, and n is a non-negative integer. The uncertainty σc(rn) of the value c(rn)

is estimated as the standard deviation of the mean of the image values used to
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(a) (b)

(c) (d)

Figure 2.17: Raw and FFT-masked plasma images. The images on the right are
the FFT-masked versions of the images on the left. Image 2.17(b) has the density
profile shown in Fig. 4.1(a), and image 2.17(d) has the density profile shown in
Fig. 4.1(b) and Fig. 2.11(a).
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compute c(rn). The noise level of the CCD camera is estimated as the median of the

image values at points outside the trap radius (specifically, in the range r = 2.6–2.8

cm), and is subtracted from the entire image before the profile is determined.

The axially integrated, radial density profile is obtained by multiplying the ra-

dial image profile by the ratio of the total number of electrons collected by the

screen (the “total charge”) to the numerical integral of the unnormalized radial im-

age profile 2π
∫
r dr c(r). An example of the resulting density profile is presented

in Fig. 2.11.a . This normalization is performed for each individual image taken,

both because the dependence of the image’s total counts on the screen bias voltage

Vs had not been characterized and the noise level of the CCD camera is a function

of the imperfectly controlled room temperature.

Phosphor-Screen Response Characteristics

There are several details of the phosphor screen response that must be charac-

terized in order to know how the relative intensity of different pixels in the image

corresponds to differences in electron density. To use a spatially independent, lin-

ear relationship between the light intensity and the number of incident electrons

(as implied in the foregoing description of the profile determination), one must

check that the amount of light emitted by the screen at any given location is a

strong, linear function of the number of incident electrons, only a weak function of

the incident electrons’ energy, and not a function of the position on the screen (the

phosphor should respond the same to a given electron input at all locations). It

is fairly difficult to measure these three responses separately in our trap, so a few

different tests were performed that give an indication of the phosphor screen’s

response. These qualities could be tested outside of the EDG device (but still in
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a vacuum) by scanning an electron beam with a variable particle energy across

the surface of the screen or by illuminating the screen with X-rays from an X-ray

source, but neither of these somewhat involved methods were used to diagnose

the EDG phosphor screen because of time and funding constraints.

An indication of the the uniform response of the screen at all locations may be

made by displacing the plasma from the trap axis a variable amount so it will strike

a different part of the screen when it is released. This is accomplished by exciting

an m = 1 diocotron mode using resistors (see sections 3.4.2 and 5.1.2), but a similar

result may be obtained by tilting the magnetic field relative to the trap electrodes.

In Fig. 2.18, the normalized number of image counts per electron is plotted as a

function of the plasma displacement. The number of image counts per electron is

estimated to be the ratio of the image’s total counts to the measured total number of

electrons, and is arbitrarily normalized for clarity. Though there is a fair amount of

scatter in the data, there doesn’t appear to be any clear dependence of the number

of image counts per electron on the distance from the trap axis. If there is no

dependence, it either means that the screen’s responses to the incident electron

flux and the incident electron energy are the same at all the locations sampled by

the plasmas in Fig. 2.18, or that any changes in these properties across the screen

are offsetting.

If the screen’s responses to the incident electron flux and the incident electron

energy are independent at all locations on the screen and the screen’s response to

incident electron energy is indeed uniform, the screen’s response to incident elec-

tron energy can be determined by varying the bias voltage on the phosphor screen

and measuring identically formed plasmas. In Fig. 2.19, the estimated number of

image counts per electron is plotted as a function of the phosphor screen voltage
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Figure 2.18: Normalized image counts per electron vs. plasma displacement. The
plasmas are displaced from the trap axis by as much as 1.25 cm, and the number
of image counts per electron changes by less than ∼ 15%. The data denoted by
open symbols is calculated from the same data set used to produce Fig. 5.2. The
points marked as “oblong” are from plasmas that are close enough to the trap
electrodes to be visibly distorted azimuthally and may have some interaction with
the electrodes. The normalization for the number of image counts per electron is
arbitrary, and the true values are approximately 0.008 times those shown. For this
data, B = 600 G, Vs = 3150 V, and Vb = −17.4 V. The data denoted with open
symbols was taken with Vh = 4.1 V, and the data denoted with solid symbols was
taken with Vh = 4.8 V.
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Figure 2.19: Normalized image counts per electron vs. phosphor screen voltage,
measured for plasmas with zero displacement from the trap axis (D = 0). The
normalization factor is the same as for Fig. 2.18.

Vs. While the number of image counts per electron is clearly dependent on the

phosphor screen voltage, it is only weakly dependent. For example, the number of

image counts per electron roughly doubles from Vs = 3200 to Vs = 3500, so a dif-

ference in electrostatic potential energy of ∆φp ≈ 15 V between the center and the

edge of the plasma only effects a ∼ 0.5% difference in the amount of light emitted

per electron. This test inherently averages over the approximate incident electron

energy range Vs− T . E . Vs + φp(r = 0) + T , since many of the electrons at r = 0

will be imparted the equilibrium plasma potential φp(r = 0), half of the particles

will be initially moving towards the screen with the additional, average thermal

energy T , and half will be initially moving away from the screen. The agreement

between the data for plasmas with N ≈ 4.98 × 108 electrons and N ≈ 1.66 × 108
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Figure 2.20: Image total counts vs. the measured number of electrons incident on
the screen.

electrons further suggests that the number of image counts per electron is not a

function of the incident electron flux.

If the screen is known to respond uniformly at all locations and have a weak

dependence on the incident electron energy, the screen’s response to the incident

electron flux can be tested by varying the filament bias voltage Vb. At higher

bias voltage Vb, the plasmas have a larger number of plasma electrons and there-

fore a higher plasma potential at r = 0. Figure 2.20 shows that the image total

counts is proportional to the total charge collected by the screen when changing

Vb. Increasing Vb also increases the initial mean-square radius of the trapped plas-

mas, causing them to sample more of the screen area. In Figure 2.20, the constant
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Figure 2.21: Image counts per electron for expanding plasmas. The plasmas ex-
pand with very little loss of charge, but the number of image counts per electron
decreases by ∼ 15%. This is thought to be due to the noise level of the diagnos-
tic. This data is calculated from the same data sets used to produce the late-time
expansion rate points in Fig. 4.14.

of proportionality is 124.0 ± 1.5 electrons/(image count), and the offset is an indi-

cation of the minimum electron density that can be distinguished from the image

noise at this screen bias voltage Vs.

Another way to test the uniformity of the screen is to measure plasmas that are

expanding but not losing any charge. Figure 2.21 shows that the number of image

counts per electron actually decreases as the plasma expands under the influence

of background gas, but this decrease in image counts is not inconsistent with the

uniform screen response suggested by Fig. 2.18 because of the noise level of the

CCD camera. For example, approximating the axially integrated density profile as
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c(r) =
A

π〈r2〉
exp

[
− r2

〈r2〉

]
, (2.5)

where A is a constant, and assigning the image total counts to be the number of

counts above a noise level cnoise produces a similar 15% drop for the change in 〈r2〉

from 0.25 cm2 → 1.0 cm2 for a noise level of only cnoise ≈ 0.017× A, which is not an

unreasonable value. Essentially, as the plasma expands, more of the light emitted

by the electrons is below the noise level of the CCD camera because the electrons

are spread out radially, and the amount of measurable light decreases for the same

number of electrons. This effect should also be present to a small degree in the

test of screen uniformity using displaced plasmas in Fig. 2.18, since the plasmas

continue to expand while the diocotron mode is growing. In that plot, the plasma

is displaced from the trap axis more quickly at higher values of resistance R, and

not at all for R = 0. The R = 0 data shows that plasma expansion accounts for

a drop in the number of counts per electron of at most 5% over the course of the

measurements. All of the plasmas represented in Fig. 2.18 were trapped for less

than one second, and the . 5% drop in the number of counts per electron for the

R = 0 data agrees with the drop for the subset of plasmas represented in Fig. 2.21

that were also trapped less than one second.

It is important to note that the test results displayed in Figures 2.18 – 2.21 do not

unequivocally prove that the EDG phosphor screen has a uniform response across

its face, a constant response with incident electron flux, and a weak response with

incident electron energy. It is conceivable that complicated dependences in these

three qualities could conspire to produce these same desirable characteristics, but

it appears unlikely that this is the case.
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Phosphor-Screen Density Diagnostic Details

The amplifier used to measure the number of plasma electrons collected by

the screen (the same one used for the total collector) is coupled to the phosphor

screen using five 4.7 nF, high-voltage ceramic capacitors in parallel (the ampli-

fier has a 3.2 nF input capacitance). A 220 MΩ TigerTail resistor in series with the

high-voltage power supply keeps the power supply from interfering on the mea-

surement timescale. This RC circuit coupling the total collector amplifier to the

phosphor screen is also used in the parallel temperature measurements.

The electronics controlling the voltage on trap electrode 6 were improved so

the plasma could be released in approximately 0.65 µs instead of 4.4 µs. This im-

provement was necessary so the plasma would escape the trap in a much shorter

time than it takes for the diocotron mode to send it through one azimuthal rotation,

thereby avoiding discernible azimuthal smearing of the image. This was accom-

plished by replacing the Apex Microtechnologies PA05 amplifier that provided the

voltage on the confining electrode 6 with a faster PA85 amplifier.

The interference filter in front of the camera has a central wavelength of 540 nm

± 2 nm and a full width at half maximum of 30 nm ± 6 nm, and was produced by

Barr Associates. The 10-bit PULNiX TM-1010 CCD camera has 1024 x 1024 pixels,

and an individual pixel corresponds to a width of 1.150 × 10−2 ± 4 × 10−5 cm at

the phosphor screen (Rw ≈ 220.9 pixels). The camera’s electronic shutter is set

to be open for 1/250 seconds to fully integrate the light from the phosphor. The

phosphor coating has a characteristic fluorescence time of ∼ 2 ms, is made with

1 µm-size grains, and was assembled by Proxitronic. The generation III (GaAs)

image intensifier is model number NE6010 from ITT Industries, has a resolution of

64 lp/mm, and amplifies the incident light by a factor of ∼ 3× 104 fL/fc.
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2.3 Temperature Diagnostics

Several methods have been developed for measuring plasma temperatures in

Malmberg-Penning trap plasmas. Some methods give an average temperature for

the entire plasma (non-destructively), while others give temperatures with varying

degrees of spatial resolution (usually requiring destruction of the plasma). Plasma-

averaged temperature diagnostics include: exciting plasma-frequency waves and

measuring their dispersion relationship [MALMBERG and DEGRASSIE, 1975], mea-

suring the power spectrum of temperature-dependent Trivelpiece-Gould modes

[ANDEREGG et al., 2003] (either naturally occurring or excited), and measuring the

power transmitted through a spheroidal plasma near the m = 1 and m = 2 dio-

cotron mode frequencies [AMORETTI et al., 2003b]. Spatially resolved temperature

diagnostics include the following: using an additional electromagnet to discrim-

inate between the electrons’ perpendicular energies in a collimated subset of the

plasma (a ‘magnetic beach’ analyzer) [HYATT et al., 1987; DEGRASSIE and MALM-

BERG, 1980; HYATT, 1988]; slowly releasing the plasma from the trap and measur-

ing the escaped charge on-axis as a function of time [EGGLESTON et al., 1992; BECK

et al., 1996], which gives the parallel temperature at r = 0 for a single plasma;

and methodically changing the exit electrode potential to several voltages near the

plasma potential (instead of to zero Volts) when releasing the plasma and using

measurements of the number of electrons that escape as a function of the radius

and the final confining voltage [EGGLESTON et al., 1992] to determine the radial

parallel temperature profile.

For the work presented in this thesis, parallel plasma temperatures at r = 0 are

measured by slowly letting the plasma leak out of the trap. Perpendicular plasma
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temperatures are inferred by fitting a thermal quasi-equilibrium radial density pro-

file to the measured density profiles.

2.3.1 T‖ Measurement

On-axis, parallel temperature measurements are performed in a manner de-

scribed by Eggleston [EGGLESTON et al., 1992]. The voltage on confining electrode

6 (the “exit” electrode) is slowly increased, and both the number of electrons es-

caping the trap and the exit electrode voltage are recorded as functions of time

(see Fig. 2.22). The exit electrode voltage is increased slowly enough to energy-

analyze the plasma electrons, allowing the highest energy electrons to escape the

trap first and the slower electrons to escape discernibly later. The measurements

are fit using the approximate relationship

d ln(Qesc)

d(eφc)
=
−1.05

T‖
, (2.6)

where Qesc is the total amount of charge that has escaped, e is the charge of an elec-

tron, φc is the confining voltage at the trap axis, and T‖ is the parallel temperature

in eV. A plot of ln(Qesc) versus φc for an EDG plasma is displayed in Fig. 2.23.

To measure the parallel temperature in this manner, the only additional equip-

ment necessary for a basic Malmberg-Penning trap is a relatively fast, charge-

sensitive amplifier, a circuit to slow the release of the plasma, and waveform dig-

itizers to record the output signals. The amplifier circuit used to measure Qesc for

EDG was designed by Robert Marsala (PPPL) and debugged by Mr. Marsala and

Hans Schneider (PPPL), and is shown in Figures 2.24–2.25. The amplifier is capaci-

tively coupled to the biased phosphor screen using the same coupling circuit used
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Figure 2.22: Temperature measurement diagram. A simple RC circuit (not shown)
is used to slow the voltage change on electrode 6. Only the first 1–2% of the Qesc

curve is measured, because additional change in the plasma potential appreciably
affects the effective confining voltage thereafter.
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2.3. Temperature Diagnostics 44

for making total charge measurements with the screen, and a simple RC filter is

used to slow the exit electrode voltage drop.

Equation (2.6) was derived [EGGLESTON et al., 1992] for the first 1–2% of the

electrons escaping from an idealized plasma column with flat ends [e.g., the plasma

length L(r, θ) = L0], with locally Maxwellian parallel energy distributions, and

measured by an electron collector that is small compared to the temperature gra-

dient’s radial length scale. However, it should also hold for plasmas with any end

shape L(r, θ) if ∂L(r, θ)/∂φc is negligible, as implied by the form of Eqs. (2.7) and

(2.14). Applying Eq. (2.6) to data where the aluminum-coated phosphor screen

is the collector implicitly treats the plasma as though it had a uniform parallel

temperature [T‖(r, θ) = T‖ 0], because the phosphor coating has a greater radius

than the entire plasma. The parallel plasma temperature obtained is referred to as

the on-axis temperature, however, because the electrons used in the measurement

come predominantly from within ∼ 6 Debye lengths of r = 0. This is because

the vacuum confining potential produced by the cylindrical electrodes is weakest

at the trap axis, where the plasma’s space charge potential is also the strongest.

Equation (2.6) only describes the first 1–2% of the electrons that escape because

further charge loss appreciably affects the plasma potential and thus the effective

potential energy difference that the electrons must overcome to escape the trap

(Eq. 2.9).

Equation (2.6) may be computed relatively simply. The charge collected by an

electrode at a given radius r and confining potential φc is represented as

Qesc(r, φc) = q
∫

A(r)

dA′ L(r′)n(r′)
∫ ∞
E

dE ′√
E ′

F (r′, E ′), (2.7)
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Figure 2.24: On-axis Temperature Diagnostic Amplifier (OTDA) circuit diagram.
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Figure 2.25: The coupling circuit (top), the On-axis Temperature Diagnostic Am-
plifier (bottom, on the bubble wrap), its HP power supply for biasing (left), and the
vacuum feedthrough (top right, with white clips) appear in this image. The white
plastic clips hold an aluminum foil shield around the floating MHV feedthrough
to ground the amplifier circuit to the machine, reducing circuit noise. The bubble
wrap helps reduce noise from vibrations caused by the cryopump.
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where A(r) is the area of the electrode located at the radial location r (in our case,

A(r) is the entire phosphor screen area and r = 0), L(r) is the length of the column,

q is the charge of an individual particle in the trap, n(r) is the particle density, and

F (r′, E ′) is the parallel energy distribution function with normalization

∫ ∞
0

dE ′√
E ′

F (r′, E ′) = 1. (2.8)

The lower limit on the energy integral in Eq. (2.7) is the threshold energy that a

particle must have to escape the confining potential φc, specifically,

E(r, φc) = q [φc − φp(r, φc)], (2.9)

where φp is the plasma potential of the charges remaining in the trap. The plasma

potential is determined self-consistently from Poisson’s equation,

1

r

d

dr

(
r
d

dr
φp(r, φc)

)
= −4πq n(r)

(
1− Qesc(r, φc)

Q(r)

)
, (2.10)

using the boundary conditions

φp(Rw, φc) = 0, (2.11)

d

dr
φp(0, φc) = 0. (2.12)

Note that the effects of the radial dependence of the confining voltage are neglected

in this derivation [φc(r)→ φc]. For a Maxwellian parallel energy distribution

F (r, E) =
1√
πT‖

e
− E
T‖ , (2.13)

Eq. (2.7) becomes

Qesc(r, φc) = q
∫

A(r)

dA′ L(r′)n(r′) erfc

√√√√E(r′, φc)

T‖

 (2.14)
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where erfc is the complementary error function. For E(r′, φc)/T‖ & 2, Eq. (2.14)

becomes Eq. (2.6), with ∼ 5% accuracy.

To measure the plasma temperature in this fashion, there are several funda-

mental criteria that must be satisfied: The rate at which the confining voltage on

the exit electrode changes must be fast enough that the plasma doesn’t have time to

reestablish local Maxwellian energy distributions, but slow enough that the diag-

nostic can distinguish more-slowly-moving electrons near the exit electrode from

faster-moving electrons that are further away or moving away from the exit elec-

trode. In addition, the measurement must be complete before powerful instabil-

ities that cause radial transport in non-monotonically-decreasing density profiles

have time to grow and interfere as the plasma is hollowed out.

These necessary conditions can be expressed as

L

v‖
, ω−1

p � T‖

(
dE

dt

)−1

� ν−1
ee , γ

−1
inst, (2.15)

where L is the characteristic plasma length, v‖ is the characteristic parallel veloc-

ity, −(1/e)dE/dt is the time rate of change of the difference between the confining

potential and the plasma potential [see Eq. (2.9)], νee is the electron-electron colli-

sion frequency, and γinst is the growth rate of the hollow-profile instabilities. Using

EDG parameters, these conditions become

3.6× 10−7 sec, 4× 10−9 sec� 1eV

(
dE

dt

)−1

� 3 ms, γ−1
inst. (2.16)

Given that the on-axis plasma potential plus a few times T is about 15eV, one ob-

tains the condition

4.7µs, 0.05µs� τramp � 39 ms, 15 · γ−1
inst. (2.17)
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The hollow-profile instabilities observed in other experiments did not affect those

temperature measurements for ∼ 200µs [EGGLESTON et al., 1992], restricting the

characteristic ramping time to the range 47µs� τramp �∼ 200µs.

2.3.2 Inferred T⊥ from Measured Density Profiles

The perpendicular electron temperatures reported in Fig. 2.11 are estimated by

fitting an ideal, thermal quasi-equilibrium density profile [DAVIDSON and MOORE,

1996; O’NEIL and DRISCOLL, 1979] to the measured, axially integrated profiles.

The thermal quasi-equilibrium density profile for these plasmas is [DAVIDSON and

MOORE, 1996] [Eq. (3.48)]

n(r, t) = n̂(t) exp

{
eφ(r, t)− eφ̂(t)

T
− r2

〈r2〉(t)

(
1 +

NLe
2

2T

)}
(2.18)

where n̂(t) is the density at r = 0 as a function of time, φ(r, t) is the electro-

static potential (determined self-consistently from Poisson’s equation), and φ̂(t)

is the electrostatic potential at r = 0. This thermal quasi-equilibrium profile shape

describes expanding, infinite-length, azimuthally symmetric plasmas that enjoy

global energy conservation and elastic electron-neutral collisions and have a spa-

tially uniform temperature (see section 3.2). Poisson’s equation can be recast in

a form [O’NEIL and DRISCOLL, 1979] that shows the underlying profile shape is

dependent on only one parameter,

ε ≡ ωrωc − ω2
r

ω̂2
p/2

− 1, (2.19)

where ωc = eB/mec is the electron cyclotron frequency, ωr is the equilibrium

plasma rotation frequency, and ω̂p is the plasma frequency at r = 0. ε is the only pa-

rameter necessary to distinguish the ideal density profiles. Example ideal profile

shapes are shown in Fig. (2.26).
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Figure 2.26: Thermal quasi-equilibrium profiles for different values of ε. The ra-
dial dimension ρ is normalized using the on-axis Debye length λD ≡

√
T/4πn0e2.

(Reproduced from [CHAO, 1999], with permission.)

More precisely, the profiles used to fit the density profile data are numerical

solutions of Eq. (2.18) and Poisson’s equation. First, the cold radius of the plasma

Rcold is estimated from the measured density profile according to n̂ π R2
cold = NL.

We also allow n̂(t) to vary when fitting the measured density profiles for simplicity,

though in principle it should be identifiable from the data. Next, a Debye length is

obtained from Rcold and the fitting parameter ε, using Davidson & Lund’s numer-

ical map of (λD/Rcold)2 versus ε (Fig. 2.27). [DAVIDSON and LUND, 1994]. Next,

the equation
1

ρ

∂

∂ρ
ρ
∂

∂ρ
ψ = eψ − (1 + ε) (2.20)

(Eq. (50) of reference [O’NEIL and DRISCOLL, 1979]), where ρ ≡ r/λD,

ψ(ρ) ≡
(
eφ(ρ)

T

)
− ρ2

(
ε+ 1

4

)
,
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cold vs. ε for thermal quasi-equilibrium profiles (originally

computed by Davidson & Lund [DAVIDSON and LUND, 1994]).
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is solved numerically using the guess for ε and the Debye length. The resulting

numerical density profile n = n̂exp[ψ(ρ)] [O’NEIL and DRISCOLL, 1979] is com-

pared with the data, and new guesses for ε and n̂ are made. The temperature is

computed from the final estimated Debye length using n̂.

2.4 Diocotron Mode Diagnostic

The m = 1 diocotron mode, one of the electrostatic surface waves supported in

Malmberg-Penning trap plasmas, has density perturbations of the form δn ∼

δn(r)(exp[imθ − i ωt]). The manifestation of this mode has been compared to an

overall radial offset of the plasma column from the trap axis, where the displaced

plasma rotates around the trap axis at the m = 1 diocotron mode frequency and

continues to rotate about its own axis at the angular frequency ωr.

The m = 1 diocotron mode amplitude and frequency as functions of time are

observed by measuring the current induced to an azimuthally discontinuous elec-

trode segment as the plasma rotates around the trap axis (see Fig. 2.28). The ampli-

tude of the mode can be approximated from this current by using the expression

for the current induced to an electrode segment by an off-axis, rotating, finite-

length line charge (Rp = 0) [CLUGGISH, 1995; KAPETANAKOS and TRIVELPIECE,

1971]

I =
2NL ω0 eLs

π

∞∑
n=1

sin(n∆θ/2) sin(nω0t)×( D
Rw

)n
− 4

(
Rw

Ls

) ∞∑
k=1

Jn(jnk
D
Rw

) sinh(jnk
Ls

2Rw
)

(jnk)2Jn+1(jnk)
e−jnkLp/Rw

 , (2.21)

which is determined for an electrode segment described by the surface {r = Rw, θ◦ <

θ < θ◦ + ∆θ, z◦ < z < z◦ + Ls}. In Eq. (2.21), ω0 is the infinite-length diocotron
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Figure 2.28: Diocotron mode diagnostic setup.
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mode frequency, NL is the line density, Lp is the length of the line charge, Ls is the

axial length of the electrode segment (the “sector probe”), ∆θ is the angular extent

of the electrode segment, Rw is the inner radius of the trap electrode (1/2 × the

trap I.D.), D is the displacement of the plasma axis from the trap axis, and jnk is

the kth zero of the Bessel function Jn. Equation (2.21) is a good approximation to

the current induced if the plasma is rotationally symmetric, such that its electric

field can be mimicked with a line charge.

The induced current is measured by recording the voltage across a resistor and

capacitor that are in parallel and inserted between the electrode segment and the

point of zero potential (“ground”), as shown in Fig. 2.28. To ensure that the di-

agnostic doesn’t resistively excite the m = 1 diocotron mode (see sections 3.4.2

and 5.1.2), this impedance is chosen to be almost purely reactive: R = 100 MΩ and

C = 2.6 nF (for 10 kHz < ω0 < 80 kHz). The voltage is measured with a high-

impedance amplifier (Zin ∼ 1013Ω), and recorded with a LeCroy 6810 CAMAC

waveform recorder. To improve the signal-to-noise ratio, amplifiers1 are connected

to opposing electrode segments (electrodes 3 and 4) and the difference of the two

signals is saved by the waveform recorder.

Data from the diocotron mode diagnostic give the growth rate of the diocotron

mode (1/D) dD/dt, and either the line density if the displacement is known or the

displacement if the line density is known. In Figure 2.29, the displacement cal-

culated from diocotron-mode-diagnostic data using a line density estimated from

the mode frequency is compared to the displacement measured from the density

diagnostic images. The two diagnostics agree qualitatively in the range 0.05 cm
1Assembled by Dr. Edward Chao and Dr. Stephen Paul
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Figure 2.29: Displacement calculation comparison. The m = 1 diocotron mode
displacement estimated from the diocotron mode diagnostic amplifiers’ signals is
calculated with a line density estimated from the mode frequency [using the value
of 〈r2〉 at t = 0 from the density diagnostic images and the finite-length diocotron
mode frequency relationship in Eq. (3.60)]. The displacements calculated from the
images are estimated for the density values above 1/5 of the peak density value to
best describe the large-amplitude modes that squash the plasma against the trap
electrodes. The mode is excited using a resistor in series with one of the diocotron
mode diagnostic amplifiers.
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< D < 0.3 cm, but the diocotron mode amplifiers aren’t able to measure displace-

ments past D ∼ 0.3 cm. Above this point, the plasmas in this data set were very

distorted azimuthally, and were almost certainly in contact with the trap electrodes

(including the electrodes the diocotron mode diagnostic amplifiers are connected

to). At low displacements, the density diagnostic is not able to distinguish the

displacement accurately due to its spatial resolution. It is not certain why the dis-

placement measurements differ by ∼ 30% in the range of qualitative agreement,

but it is important to note that the estimated plasma line density used in this dis-

placement calculation (and for most of the diocotron mode data analysis in this

thesis) is for fixed values of 〈r2〉(t = 0) and plasma length LP , though the plasma

is expanding during the evolution.

The displacement computation is not completely straightforward—inverting

Eq. (2.21) is not an easy task. In addition, the effective voltage amplitude com-

puted at each particular point in time is averaged over several diocotron mode pe-

riods according to V 2
eff = 2〈V 2〉, since only around 10 data points are recorded per

period. The displacement is therefore estimated by neglecting the finite-length-

plasma terms in Eq. (2.21) (those proportional to Rw/Ls, which is acceptable for

small displacements), squaring the equation V = IZ [where Z = (R)/(1 + iωRC)

and I is given by Eq. (2.21)], and averaging over a diocotron mode period, result-

ing in

2〈V 2〉
A2

=
∞∑

odd(n)≥1

(
D

Rw

)2n

(2.22)

=
∞∑
n=0

(
D

Rw

)2+4n

(2.23)

=

(
D
Rw

)2

1−
(
D
Rw

)4 (2.24)
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where A = 2NLeLs/(πC). The mode’s growth rate can be conveniently estimated

from the effective amplitude Veff by taking the time derivative of Eq. (2.24) and

dividing both sides by Eq. (2.24), resulting in

1

Veff

dVeff

dt
=

1

D

dD

dt


∞∑
n=0

(2n+ 1)
(
D
Rw

)4n

∞∑
n=0

(
D
Rw

)4n

 (2.25)

=
1

D

dD

dt

1 +
(
D
Rw

)4

1−
(
D
Rw

)4

 (2.26)

The factor in the square brackets is 41/40 = 1.025 for D/Rw = 1/3 and 17/15 ≈

1.133 for D/Rw = 1/2, which agrees with observations that plots of d(lnVeff)/dt

and d(lnD)/dt appear quite similar.

2.5 Basic Equipment

The EDG device is evacuated using a Helix Technologies CryoTorr 8 cryopump

(modified to use metal seals) and a Balzers TPU 180H Turbopump backed by a

Leybold-Heraus TriVac D8A roughing pump behind a zeolite trap. The turbop-

ump has a rated pumping speed of 180 liters/sec. and the cryopump is rated to

absorb nitrogen at a rate of 1500 liters/sec., water at 4000 liters/sec., and hydrogen

at 2500 liters/sec. Pumping the vessel down from atmospheric pressure usually

only results in a ∼ 2× 10−9 Torr vacuum, so heating tape and an aluminum foil

tent are used to hold the machine at 125− 150 ◦C for several days and drive water,

hydrocarbons, and other polar molecules off the interior surfaces of the device (to

“bake” it). The inner faces of the cylindrical electrodes used in the trap were vapor-

coated with gold [MOORE, 1995] to reduce gas desorption inside the trap during

plasma evolutions and to provide good electrical conductance. After baking, the
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device regularly reaches pressures of ∼ 4× 10−10 Torr and sometimes well into the

10−11 Torr range (recently 3.3 ×10−11 Torr). The base pressure is quite sensitive,

however, to the temperature in the room and the filament heating voltage, so both

are kept as low as practical.

Changes in the background gas pressure are measured with two Balzers IMR

132 Bayard-Alpert nude ionization gauges, one near the cryopump with fair vac-

uum conductance to the trap and the other near the turbopump with decidedly

worse vacuum conductance. A Leybold IE511 extractor gauge was added in late

2001 (before the small filament expansion rate experiments) to the good-conductance

side to give better resolution in the ∼ 10−11 Torr range and a check on the per-

formance of the ionization gauge. Unfortunately, this necessitated enclosing the

Bayard-Alpert ionization gauge in a smaller, 3 3/8” tube, which heats up notice-

ably and produces a higher baseline reading. The ionization gauge on the poor-

conductance side was also enclosed in a 3 3/8” tube to reduce stray light affecting

the phosphor-screen diagnostic images. Accordingly, the much cooler extractor

gauge is currently considered the most reliable indicator of the background gas

pressure. It is also necessary to account for the facts that the gauges are roughly 5

times less sensitive to helium gas than they are to nitrogen and are also affected by

the magnetic field.

The magnetic field is supplied with 28 water-cooled L2 coils [BONANOS, 1964]

arrayed in a solenoidal configuration and driven by an EMI EMHP power sup-

ply and a Sorensen SRC 40-50 power supply. Three L2 coils on each end carry 2.7

times the current carried by the inner 22 coils, providing a more uniform magnetic

field [Stowell, 1997] along the trap axis (Fig. 2.30). For the experiments using the

scanning Faraday-cup density diagnostic, the magnetic field was aligned with the
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Figure 2.30: Predicted on-axis magnetic field produced per Ampere of central
solenoid current as a function of axial distance from the center of the solenoid.
(Reproduced from [CHAO, 1999], with permission.)

trap electrodes by centering the entire vacuum vessel inside the coil set, though

this was later seen to be a non-ideal criterion. For the 2003 experiments with the

phosphor-screen diagnostic, two orthogonal sets of Helmholtz-like trimming coils

(adding magnetic field components perpendicular to the trap axis [MOORE, 1995])

were resurrected to simplify the alignment of the magnetic field with the trap elec-

trodes’ axis. Using the trimming coils, the trap is considered aligned when the

initial diocotron mode amplitude is minimized, though a better criterion could be

minimizing the plasma expansion rate [GILSON, 2001]. The better criterion proved

to be an impractical method for the EDG device, though cursory measurements

suggest that the two criteria coincide for the current filament placement. The

trap electrodes are located axially within the solenoid in such a way to provide
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a near-uniform field from the phosphor screen to the far end of the trapping re-

gion. Specifically, the center of the solenoid is set equidistant from the surface of

the phosphor screen and the gap between electrodes 1 & 2. The parts of the vac-

uum vessel inside the solenoid are made of aluminum to minimize the effects of

stainless steel components on the magnetic field structure.

The trap electrodes are made of OHFC copper and held together with Macor

supports, long molybdenum support rods, and aluminum and molybdenum hard-

ware (Fig. 2.3). The parts of the vacuum vessel containing the trap and the density

diagnostic feedthroughs are aluminum, and the rest of the vessel is stainless steel.

These materials were chosen to minimize interference with the imposed magnetic

field from the solenoid and the influence of vacuum surface outgassing on the ves-

sel base pressure.

To vary the background gas pressure, helium is usually fed into the chamber

using a Vacuum Generators LVM 940 all-metal leak valve. Sufficient control to

distinguish changes in plasma behavior in the 10−11 – 10−10 Torr range is enhanced

by lowering the helium pressure behind the leak valve to < 10 Torr in a separate,

vacuum-worthy gas reservoir.



Chapter 3

The Dynamics of Long, Warm

Plasmas in Malmberg-Penning Traps∗

This chapter is a review of recent work describing long (Rp/Lp � 1), warm

(T & 0.1 eV) Malmberg-Penning trap plasmas that is relevant to the dynamics of

EDG plasmas considered in this thesis. (Rp is the characteristic plasma radius, and

Lp is the characteristic plasma length.) First, the good confinement of non-neutral

plasmas in these traps (section 3.1.1) and the mechanisms that allow particles and

energy to redistribute in the plasma (section 3.1.2) are described. Next, the proper-

ties of plasmas in thermal equilibrium and plasmas that are in a slowly changing,

thermal quasi-equilibrium state are described (section 3.2). Then, the ways that

field asymmetries in the trap can cause the plasma to expand (section 3.3.1) and

the plasma expansion due to frequent collisions with gas molecules (section 3.3.2)
∗This overview draws substantially from chapters 3 and 5 of reference [CHAO,

1999].

61
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are discussed. Finally, the factors influencing the evolution of the m = 1 diocotron

mode, an azimuthally propagating electrostatic wave, are detailed (section 3.4).

3.1 Particle Dynamics and Transport

3.1.1 Global Confinement

Plasmas with a single charged species do not suffer from ambipolar particle dif-

fusion as neutral and partially neutralized plasmas do. It is not surprising, then,

that these plasmas are confined more robustly than neutral plasmas are. To illus-

trate this, many authors have noted that conservation of angular momentum con-

strains the particle transport [O’NEIL, 1980b; MALMBERG et al., 1982]. The total

canonical angular momentum of a system of N charged particles may be written

as

L =
∑
j

rj ×Pj (3.1)

L =
∑
j

(Pj)φ rj =
∑
j

[
mjvφj +

qj
c
Aφ(rj)

]
rj, (3.2)

where Pj is the jth particle’s canonical momentum, vφj is the particle’s velocity in

the azimuthal direction, qj is the particle’s charge, mj is the particle’s mass, and

Aφ(r) is the magnetic vector potential in the azimuthal direction. In Malmberg-

Penning traps, the magnetic field is uniform and in the axial direction (the diamag-

netic field is usually negligible), so the magnetic vector potential is Aφ(r) ' Br/2,

and Eq. (3.2) becomes

L =
∑
j

(Pj)φ rj '
∑
j

[
mjvφjrj +

qj
c

B

2
r2
j

]
. (3.3)
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For a sufficiently large magnetic field, the azimuthal particle velocity is small com-

pared to the fast cyclotron orbits that the particles follow, and the first term in the

sum may be neglected. (This criterion may be expressed as (ωp/Ωc)
2 � 1 [DAVID-

SON, 1990].) For particles with the same charge qj = q, Eq. (3.3) becomes

L '
∑
j

qj
c

B

2
r2
j =

q

c

B

2

∑
j

r2
j . (3.4)

To the extent that the system’s total angular momentum L is conserved, its mean

square radius 〈r2〉 ≡
∑
j

r2
j/N should also be approximately constant. A more com-

prehensive treatment [O’NEIL, 1980a; DAVIDSON, 1990] indicates that conserva-

tion of total canonical angular momentum and total energy are enough to guar-

antee that a significant fraction of the trapped particles will never be lost from a

perfectly constructed Malmberg-Penning trap. Furthermore, azimuthally asym-

metric electron plasmas have been stably trapped for ∼ 10 seconds [NOTTE et al.,

1992] in azimuthally asymmetric traps, demonstrating that only a minimum energy

state (for E × B drift dynamics) [O’NEIL and SMITH, 1992] and not conservation

of total canonical angular momentum is necessary for good non-neutral plasma

confinement and stability.

In non-neutral plasma experiments, angular momentum can be extracted from

or imparted to the system by inherent asymmetries in the confining electric or

magnetic fields [EGGLESTON and CARRILLO, 2003; KABANTSEV et al., 2003], in-

tentionally applied asymmetries in the confining fields [HOLLMANN et al., 2000a;

ANDEREGG et al., 1998; HUANG et al., 1997], intentionally applied radiation (lasers),

and collisions between the plasma particles and neutral gas molecules [DAVIDSON

and MOORE, 1996; DOUGLAS and O’NEIL, 1978]. Indeed, by judiciously apply-

ing time-varying, azimuthally asymmetric voltages to segmented trap electrodes,

enough angular momentum can be continuously added to the plasma to overcome
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the effects of inherent trap imperfections. Plasmas have been trapped for arbitrar-

ily long periods of time (weeks) with this technique [HUANG et al., 1997].

3.1.2 Evolution Towards Thermal Equilibrium

When a collection of electrons is initially trapped in a Malmberg-Penning trap,

there is no reason to believe that it is in a thermal equilibrium state. However,

there is a series of internal plasma processes that will eventually rearrange any

initial electron distribution into a thermal equilibrium state if not contravened by

external influences.

First, the electrons evolve according to the Vlasov equation

∂

∂t
f(r,p) + p · ∂

∂r
f(r,p) + q

(
E +

v

c
×B

)
· ∂
∂p

f(r,p) = 0, (3.5)

and reach a collisionless equilibrium through collective, nonlinear processes [DAVID-

SON and KRALL, 1970]. For example, electron plasmas with non-monotonically-

decreasing (hollow) radial density profiles are unstable to internal diocotron insta-

bilities, and internal m = 1 modes have been observed to grow exponentially in

experiments [DRISCOLL, 1990; DRISCOLL and FINE, 1990]. The density reorganiza-

tion can sometimes take hundreds of cold plasma rotation times τE×B ∼ 2π/ωE×B,

where ωE×B = cE/rB ≈ ω2
p/2Ωc, for initially hollow density profiles [HUANG et al.,

1995]. The cold plasma rotation time is τE×B < 4µs for typical EDG plasmas.

After a quasi-steady Vlasov equilibrium state is achieved, local thermal equilib-

rium is established along the magnetic field on electron-electron collision timescales.

Collisions between particles whose guiding centers are less than two gyroradii

apart (ρ = |R1 − R2| . 2 rL) first eliminate any non-Maxwellian features in the
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energy distributions and then remove any residual anisotropy between the per-

pendicular and parallel temperatures. The electron velocity distribution functions

approach Maxwellian distributions in the characteristic time given by the electron-

electron Coulomb collision frequency [O’NEIL and DRISCOLL, 1979]

νee =
16

15

√
π nv̄b2 ln

(
rL
b

)
(3.6)

where n is the electron density, v̄ =
√
T/me is the thermal velocity at equilibrium,

me is the electron mass, b = e2/T is the classical distance of closest approach,

rL = v̄/Ωc is the electron cyclotron radius, and ln(rL/b) is the Coulomb logarithm.

Concurrently, the perpendicular and parallel electron temperatures will start equi-

librating at approximately the anisotropic temperature equilibration rate [BECK

et al., 1996; HYATT et al., 1987]

νT =
8

5

√
π nv̄b2 ln

(
rL
b

)
=

3

2
νee, (3.7)

which describes the equilibration of T⊥ and T‖ in reasonably warm plasmas. The

Coulomb logarithm in Eqs. (3.6) and (3.7) is changed from the more familiar ln(λD/b)

(which appeared in the original calculation of νT [ICHIMARU and ROSENBLUTH,

1970]), since rL � λD in typical non-neutral plasmas instead of rL � λD. (λD =√
T/4πne2 is the Debye length.) This replacement is generally acceptable when ap-

plying transport theory results for low-magnetic-field regimes (rL � λD) to high-

magnetic-field regimes (rL � λD) [MONTGOMERY et al., 1974; SILIN, 1962]. For

EDG parameters, 1/νT ≈ 4 ms, so local thermal equilibrium should exist in less

than 24 ms after the particles are trapped (including ∼ 500 × τE×B for reaching a

collisionless equilibrium).
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Finally, radial transport of energy, angular momentum, and particles across the

magnetic field should allow the plasma to reach an overall (“global”) thermal equi-

librium. The transport in laboratory non-neutral plasmas is usually dominated by

Debye-length-scale interactions between particles instead of classical, gyroradius-

scale collisions (again, because rL � λD). These Debye-length-scale interactions

[DUBIN, 1998; DRISCOLL et al., 2002] (often called E×B drift collisions) allow

particles with guiding centers that are well-separated across the magnetic field

to exchange energy and angular momentum, and this transport is more effective

than gyroradius-scale collisional transport in these plasmas because of the larger

number of particles involved. The transport coefficients for Debye-length-scale

interactions and gyroradius-scale collisions are compared in Fig. 3.1. The overall

transport coefficients include both of these effects and also the effects of lightly

damped plasma waves:

Dtotal = DE×B +Dclass (3.8)

νtotal = νE×B + νclass + νwaves (3.9)

(χT )total = (χT )E×B + (χT )class + (χT )waves. (3.10)

In a Debye-length-scale interaction, two particles that are a transverse distance

ρ from one another feel the electric fields from each other as they pass axially,

and accordingly E × B drift across the magnetic field. Their adiabatic invariants

µi = (1/2)me(v⊥)2
i /B are unchanged to first order in rL/ρ , but the particles do ex-

change parallel energy. Because the particles make many velocity-scattering colli-

sions in 1-D along the magnetic field with other particles, they will likely approach

one another again and experience multiple, correlated, Debye-length-scale interac-

tions before they are separated [DUBIN, 1997]. This is accounted for with the factor
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Diffusion Kinematic Viscosity Thermal Diffusivity

D η
nm

2
5n κ

ρ < rL
4

3

√
π νc r

2
L ln

(
rL

b

)
2

5

√
π νc r

2
L ln

(
rL

b

)
16

15

√
π νc r

2
L ln

(
rL

b

)
classical
velocity

scattering

Longmire & Rosenbluth 1956 Longmire & Rosenbluth 1956
Simon 1955

Rosenbluth &
Kaufman 1958

rL < ρ < λD 2α
√
π νc r

2
L ln

(
v̄

∆vmin

)
ln

(
λD

rL

)
0.59α

√
π νc λ

2
D ln

(
v̄

∆vmin

)
0.48 νcλ

2
D

3-D
vz-resonant

O’Neil 1985, Dubin 1997
Anderegg 1997

O’Neil 1985, Dubin 1997
Driscoll 1988

Dubin & O’Neil 1997
Hollmann 2000

rL < ρ < λD 8π2 fb

r|ω′E×B |
νcr

2
L ln

(
r

d

)
16π2 fb

rω′E×B
νcd

2g

(
2d

r

)
2-D

axially-
averaged

Dubin & Jin 2001
Anderegg 2002

Dubin & O’Neil 1998
Kriesel 2001

n.a.

Table 3.1: Comparison of transport coefficients for classical, gyroradius-scale colli-
sions and Debye-length-scale interactions. This table was compiled in [DRISCOLL
et al., 2002]. Note the enhancement of the 3-D kinematic viscosity and thermal dif-
fusivity over their classical values by approximately (λD/rL)2/ ln(rL/b), and that
both 2-D coeffients are proportional to the number of axial bounces a particle
makes during an interaction Nb ≡ fb/(rω

′
E×B), where fb = v̄/2Lp is the bounce

frequency, ωE×B = cE/rB, and rω′E×B = r∂ωE×B/∂r = S(r) is the rotational shear.
νc is the “collision” frequency νc ≡ n v̄ b2, d is the predicted radial interaction dis-
tance d = 2rLNb(∂Lp/∂r), and and g(2d/r) is a collision integral. The coefficient α
is either α = 3 or 1, depending on the collisionality and the rotational shear.



3.1. Particle Dynamics and Transport 68

α in Fig. 3.1. If the background shear in the plasma rotation profile is low, then

α ' 3. (The time for the particles to be sheared apart by the background plasma

motion, |ρ(∂/∂r)ωE×B|−1, where ωE×B = cE/rB, has to be much greater than the

time for the correlated interactions to occur.) For larger shear, where the pairs of

particles are limited to only one collision, α = 1. If the plasma is sufficiently ener-

getic that the interacting particles make many axial bounces at the ends of the trap

before they are separated, the fast axial motion of the particles can be averaged

away and the dynamics becomes a 2-D (perpendicular) evolution of charged rods

[DUBIN and O’NEIL, 1998].

Debye-length-scale interactions in EDG plasmas should cause transport de-

scribed by the 3-D transport coefficients from Fig. 3.1, specifically, the characteristic

diffusion coefficient [DUBIN, 1997; ANDEREGG et al., 1997a,b]

D = 2α
√
π νc r

2
L ln

(
v̄

∆vmin

)
ln

(
λD
rc

)
, (3.11)

the characteristic kinematic viscosity [DUBIN, 1997]

ν =
η

nme

= 0.59α
√
π νc λ

2
D ln

(
v̄

∆vmin

)
, (3.12)

and the characteristic thermal diffusivity [DUBIN and O’NEIL, 1997; HOLLMANN

et al., 2000b]

χT =
2

5n
κ = 0.48 νcλ

2
D, (3.13)

where νc is the common “collision” frequency νc ≡ n v̄ b2, α ' 3 is the enhance-

ment from multiple, correlated collisions, and ∆vmin is the minimum relative ax-

ial velocity between the two particles where integration over unperturbed orbits

is valid. The quantity ∆vmin may be limited by shear in the plasma rotation or

by velocity-scattering collisions with other particles. Velocity-scattering collisions
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are responsible for limiting ∆vmin in a near-equilibrium plasma, giving ∆vmin ∼

(Dv

√
rLλD)1/3, where Dv is the velocity-space diffusion coefficient Dv ∼ nv̄3b2. κ is

the coefficient of heat transport, and η is the coefficient of shear viscosity.

The associated energy flux ΓE is

ΓE = −κ ∂T
∂r

(3.14)

and the radial particle flux Γn is [DUBIN, 1998]

Γn = nvr = − c

eB

1

r2

∂

∂r
r3η

∂

∂r
ωr, (3.15)

where ωr = ωE×B + ωdia is the total, fluid rotation frequency, ωE×B = cE/rB, and

ωdia = (c/enrB)∇(nT ). The plasma has a uniform rotation frequency at all radii

in thermal equilibrium due to the plasma’s intrinsic radial electric field, and the

viscous momentum transport reduces shear in the rotation frequency profile by

rearranging the particles until they have an equilibrium density profile.

An estimate of the order of magnitude of the characteristic energy transport

time across the field may be made by combining the equation for energy transport2

∂

∂t

(
3

2
nT
)

= −∇ · ΓT = ∇ · κ∇T (3.16)

with the thermal diffusivity in Eq. (3.13). Making the replacements

∂

∂r
T →

√
2

Rp

T

r → Rp√
2

∂

∂r
→ 1

λD
, (3.17)

2This form of the energy transport equation [DUBIN, 1998] neglects the rota-
tional kinetic energy of the plasma and weak sources of heating, such as interaction
with field asymmetries, heating of the plasma with oscillating applied confinement
fields (particularly “rotating wall” fields [HOLLMANN et al., 2000a]), and collisions
with hot neutral gas molecules.
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one obtains
1

τE×BT

∼ 5

3
(0.48)νc

(√
2
λD
Rp

)
. (3.18)

Similarly, the particle transport time may be estimated by combining the particle

transport (continuity) equation

∂n

∂t
= −∇ · Γn (3.19)

with Eqs. (3.12) and (3.15). Making the replacements

∂

∂r
ωr →

√
2

Rp

ωr

ωr → ωE×B =
cE

rB
≈

ω2
p

2Ωc

r → Rp√
2

∂

∂r
→ 1

λD
,

∆vmin →
(
nv̄3b2

√
rLλD

)1/3

, (3.20)

gives
1

τE×Bn

∼
(
0.59α

√
π
) (2

3
π
)
νc

(
c

B

)2

ln
(
nb2

√
rLλD

)
nme. (3.21)

For comparison, the gyroradius-scale transport coefficients with the replacements

∂

∂r
ωr →

√
2

Rp

ωr

∂

∂r
T →

√
2

Rp

T

ωr → ωE×B =
cE

rB
≈

ω2
p

2Ωc

r → Rp√
2

∂

∂r
→ 1

rL
(3.22)
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become
1

τ class
T

∼ 16

9

√
π νc ln

(
rL
b

)(√
2
rL
Rp

)
(3.23)

1

τ class
n

∼ 2

5

√
π (2π) νc ln

(
rL
b

)(
c

B

)2

nme. (3.24)

From these order-of-magnitude estimates, we see that the energy transport time

for the Debye-length-scale interactions is approximately a factor of τ class
T /τE×BT =

(15/16)(0.48/
√
π) (λD/rL) (1/ ln(rL/b)) smaller than the classical value. The density

profile relaxes with a characteristic time τ class
T /τE×BT = (5/2)(0.59α) ln

(
nb2
√
rLλD

)
/

ln(rL/b) times smaller than the time estimated for gyroradius-scale collisions.

Using the EDG-typical parameters n0 ∼ 1.2 × 107/cm3, T ∼ 1 eV, and B = 600

G, the values obtained for these characteristic times are

τE×BT ∼ 0.4 s

τ class
T ∼ 0.5 s

τE×Bn ∼ 29 s

τ class
n ∼ 77 s,

giving τ class
T /τE×BT ∼ 1 and τ class

n /τE×Bn ∼ 3. While the characteristic energy trans-

port time for Debye-length-scale interactions is close to the classical transport time,

the modified density profile relaxation time is nearly a factor of three shorter than

its classical value. The short times for energy transport are reassuring, since EDG

plasmas are only observed for fewer than 30 seconds. The new Debye-length-

interaction estimate for the particle transport time τE×Bn , however, is still fairly long

compared to the apparent relaxation time from experiments. This suggests that ei-

ther some other effect is responsible for the apparently thermal quasi-equilibrium

profiles (see section 3.2) observed in EDG, or, more likely, that our crude estimate
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does not sufficiently describe the true rates because of their dependence on the

details of the density and temperature profiles.

Both the viscosity and thermal diffusivity can be additionally enhanced by the

local emission and remote absorption of lightly damped plasma waves [ROSEN-

BLUTH and LIU, 1976; WARE, 1993], which allow transport of energy and momen-

tum at distances much greater than a Debye length. This mechanism is only ex-

pected to become the dominant means of energy transport in Malmberg-Penning

trap plasmas when Rp ≥ 102λD and the dominant means of momentum transport

when Rp ≥ 103λD, [DUBIN and O’NEIL, 1997], neither of which are true of the

EDG plasma regime.

3.2 Thermal Equilibrium and Thermal Quasi-Equilibrium

Plasmas

The thermal equilibrium distribution function [DAVIDSON and LUND, 1994;

DAVIDSON, 1990; DAVIDSON and KRALL, 1970] for an infinite-length, non-neutral

plasma confined by a uniform magnetic field is

f(r,p) = n0

(
me

2πT

)
exp

[
−H − ωrLz

T

]
. (3.25)

In Equation (3.25), H is the single particle Hamiltonian

H =
p2

2me

− eφ(r), (3.26)

Lz is the single particle canonical angular momentum

Lz = pφr +
−e
c
A(r)r = pφr −

eB

2c
r2, (3.27)
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and the electrostatic potential φ(r) is obtained self-consistently from Poisson’s equa-

tion
1

r

∂

∂r
r
∂

∂r
φ = 4πen(r), (3.28)

where n0 exp[eφ(0)/T ] is the density at r = 0 and T is the electron temperature (in

ergs). The fluid rotation frequency ωr is one of the two roots

ω±r ≡ (Ωc/2)

1±

√√√√1−
2ω̂2

p

Ω2
c

(1 + ε)

 , (3.29)

determined from radial force balance on a fluid element, which can be written in

the form

ωrΩc − ω2
r ≥ ω̂2

p/2, (3.30)

ωrΩc − ω2
r

ω̂2
p/2

≡ 1 + ε. (3.31)

In Equations (3.29) and (3.31), Ωc = eB/mec is the electron cyclotron frequency, and

ω̂p is the plasma frequency ω̂2
p = 4πne2/me. The radial density profile, obtained

from the integral n(r) =
∫
d3p f(r,p), becomes

n(r) = n0 exp
{
− 1

T

[
−eφ(r) +

me

2T
ωr(Ωc − ωr)r2

]}
(3.32)

for an isotropic, Maxwellian particle energy distribution [φ(r) is again given by

Eq. (3.28)].

Using this equation for n(r), the expressions for the mean-square radius

〈r2〉 =

∫
r dr dθ r2 n(r, θ, z)∫
r dr dθ n(r, θ, z)

(3.33)

and the average angular momentum 〈Lz〉 (at a constant temperature T ) become

[DAVIDSON and LUND, 1994]

〈r2〉eq =
2T + e2NL

me(ωrΩc − ω2
r)

(3.34)
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and

〈Lz〉 = me(ωr − Ωc/2)〈r2〉eq. (3.35)

where NL =
∫
r dr dθ n(r, θ). Equation (3.35) can be solved for the rotation fre-

quency ωr, and the result inserted into Eq. (3.34) to obtain expressions for ωr and

〈r2〉eq in terms of the measured quantity T and the conserved quantities NL and

〈Lz〉. Equation 3.34 may also be solved directly to obtain the plasma’s rotation fre-

quency, which at low densities (ω2
p/Ω

2
c � 1) [DAVIDSON and LUND, 1994] becomes

ωr =
1

〈r2〉
NLe

2

meΩc

(
1 +

2T

NLe2

)
, (3.36)

The quantity ωr(Ωc − ωr) in Eq. (3.32) may be replaced using Eq. (3.34) to express

the thermal equilibrium density profile in the useful form

n(r) = n̂(t) exp

{
eφ(r, t)− eφ̂(t)

T
− r2

〈r2〉eq

(
1 +

NLe
2

2T

)}
(3.37)

where n̂(t) is the density at r = 0 and φ̂(t) is the electrostatic potential at r = 0.

In the pressure range where electron-neutral collisions occur much less fre-

quently than electron-electron Coulomb collisions (νen � νee), the electron-electron

collisions (described in section 3.1.2) should keep the plasma temperature uniform

even though the plasma is slowly losing angular momentum to the neutral gas.

This plasma state may be called thermal quasi-equilibrium, since the the plasma is

slowly expanding with time. Fluid equations have been used to model this quasi-

equilibrium by considering the expansion of an ideal, infinite-length, azimuthally

symmetric electron plasma in the presence of background gas [DAVIDSON and

MOORE, 1996; DAVIDSON and CHAO, 1996b]. The electron-neutral collisions in-

cluded in the evolution are elastic, occur at a constant frequency νen, and appear

as a drag on the system in the fluid momentum equation

dv

dt
= − T

nme

∇n− e

me

(
E +

1

c
v ×B

)
− νenv. (3.38)
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First, the dv/dt “inertial” term is neglected, restricting subsequent solutions to

slowly rotating plasmas where ωr � Ωc. E is determined from Poisson’s equa-

tion,

1

r

∂

∂r
r
∂

∂r
φ = 4πen (3.39)

−(∂φ/∂r)r̂ = E. (3.40)

Equations (3.38) and (3.40) combine to give the radial and azimuthal particle fluxes:

nVr = − νen
(ν2
en − Ω2

c)

1

me

(
T
∂n

∂r
− ne∂φ

∂r

)
, (3.41)

nVφ = − Ωc

(ν2
en − Ω2

c)

1

me

(
T
∂n

∂r
− ne∂φ

∂r

)
. (3.42)

Note that, predictably, Vr → 0 as νen → 0, and (perhaps not so predictably)

Vr = Vφ · (νen/Ωc). With the expression for the radial particle flux, the plasma’s

mean-square radius can be obtained [DAVIDSON and MOORE, 1996] from the fluid

continuity equation

∂

∂t
n− 1

r

∂

∂r
(rnVr) = 0, (3.43)∫ Rw

0
dr 2πr r2

(
∂

∂t
n− 1

r

∂

∂r
(rnVr)

)
= 0, (3.44)

d

dt
〈r2〉 =

2

NL

∫
dr 2πr rnVr, (3.45)

giving
d

dt
〈r2〉 =

2NLe
2

me

νen(t)

Ω2
c − ν2

en(t)

(
1 +

2T (t)

NLe2

)
(3.46)

The only quantities on the right hand side of Eq. (3.46) that vary with time (in

an infinite-length plasma) are the temperature T and the electron-neutral collision

frequency νen, since the plasma’s electrostatic potential energy is transferred to the
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particles’ kinetic energy as the plasma expands. Nonlinear evolution of the mean-

square radius has been predicted [DAVIDSON and CHAO, 1996b] using Eq. (3.46),

conservation of energy, and neglecting the temperature dependence of νen.

It is important to note that Eq. (3.46) is valid for all uniform-temperature plas-

mas with density profiles satisfying Eqs. (3.41), (3.43), and (3.39), even those that

are not thermal quasi-equilibrium density profiles. If the plasma is in thermal

quasi-equilibrium, the additional constraint

∂

∂t

(
2π n 〈r2〉
NL

)
= 0 (3.47)

applies, where η ≡ 2π n 〈r2〉/NL is essentially a normalized radial density profile

called the profile shape function. Combining Eqs. (3.41), (3.43), (3.47), and (3.46),

the thermal quasi-equilibrium density profile may be expressed as the solution to

n(r, t) = n̂(t) exp

{
eφ(r, t)− eφ̂(t)

T
− r2

〈r2〉(t)

(
1 +

NLe
2

2T

)}
(3.48)

and Poisson’s equation (Eq. 3.39) [DAVIDSON and MOORE, 1996]. Again, n̂(t) is the

density at r = 0 as a function of time, φ(r, t) is the electrostatic potential determined

self-consistently from Poisson’s equation, and φ̂(t) is the electrostatic potential at

r = 0. This solution has the same form as the thermal equilibrium density profile

in Eq. (3.37), which was obtained from the thermal equilibrium distribution f(r,p)

[with the identifications n0 → n̂(t) exp{−eφ̂(t)/T (t)} and 〈r2〉eq → 〈r2〉(t)]. The

addition of electron-electron Coulomb collisions allows the plasma’s mean-square

radius 〈r2〉(t) to increase with time according to Eq. (3.46). In addition, Davidson

and Moore showed that an expanding, thermal, quasi-equilibrium state maximizes

the plasma entropy, and both electron-electron collisions and electron-neutral col-

lisions eventually cause the plasma to relax to it.
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3.3 Non-Ideal Plasma Expansion

3.3.1 Asymmetry-Induced Plasma Expansion

Imperfections in the trap fields allow the plasma to expand much more quickly

than is expected from the influence of background gas molecules alone. Trap im-

perfections were first suspected to influence the plasma dynamics at low pressures

(νen � νee) in the initial measurements of pressure-induced plasma expansion

[MALMBERG and DRISCOLL, 1980], and this suspicion was confirmed when a more

carefully constructed trap (with fewer mechanical misalignments and better ma-

terials) produced greatly reduced transport [DRISCOLL et al., 1986]. This transport

took a characteristic time τn0/2 ∝ (Lp/B)−2, where τn0/2 is the time for the electron

density at r = 0 to drop by a factor of 2.

Part of the asymmetry-induced transport is due to single-particle effects, where

particles whose motion is resonant with an asymmetry experience greater cross-

field drifts than non-resonant particles [EGGLESTON and O’NEIL, 1999]. It is clear

that individual particles participate in the transport because the τn0/2 ∝ (Lp/B)−2

scaling seen for plasmas was reproduced in a test particle experiment where the

bulk of the plasma was replaced with a biased wire at r = 0 and the electron

density was low enough that λD > Rw [EGGLESTON, 1997].

The predicted radial flux [EGGLESTON and O’NEIL, 1999] for a plasma in the

“resonant plateau” regime, where frequent velocity-scattering collisions knock par-

ticles out of resonance with the asymmetry before they bounce once in the asym-

metry potential (νeff � ωb), was calculated to be
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Γplateau = −
∑
l,m,ω

n√
2πv̄2

Lp
|l|

∣∣∣∣∣cmφl,m,ω(r)

rBz

∣∣∣∣∣
2

×
[

1

n

dn

dr
+

1

T

dT

dr

(
x2 − 1

2

)
+
√

2
lπ

Lp

rΩc

mv̄
x

]
e−x

2

, (3.49)

where n = n(r) is the electron density, v̄ =
√
T/m, T 6= T (r), x = vres/

√
2v̄, vres =

(Lp/lπ)(ω−mωE×B), ωE×B = cE/rB is the azimuthalE×B rotation frequency, and

φl,m,ω(r) is the Fourier amplitude of an asymmetry mode with axial mode number

l = kzLp/π, azimuthal mode number m, and angular frequency ω. The effective

collision frequency is ν3
eff ≈ νee(lπv̄/Lp)

2 = νeel
2ω2

b , where ωb = πv̄/Lp is the axial

bounce frequency. The radial flux Γplateau was shown to be in good qualitative but

not quantitative agreement with experiments where m, l, ω, B, dn/dr, the axial

wire bias φcw (which produces Er), and φl,m,ω(r) were varied [EGGLESTON and

CARRILLO, 2003, 2002].

The flux for the “banana” regime, where particles make multiple bounces in

the asymmetry potential (νeff < ωb) and the characteristic particle transport length

is the banana width, was heuristically determined to be

Γbanana = −
∑
l,m,ω

n√
2π

νee
(
L
lπ

)2 (
mv̄
rΩc

)2 ( eφl,m,ω(r)

T

)1/2

{
1−

(
mL
lπ

)2 (
1
rΩc

) (
dωE×B
dr

)}3/2
×

[
1

n

dn

dr
+

1

T

dT

dr

(
x2 − 1

2

)
+
√

2
lπ

L

rΩc

mv̄
x

]
e−x

2

, (3.50)

but has not been verified experimentally.

In addition to single-particle effects, collective effects can also contribute to

asymmetry-induced transport. This has been demonstrated [KABANTSEV et al.,

2003; KABANTSEV and DRISCOLL, 2003a] by trapping particles in an imposed elec-

tric asymmetry potential and exciting trapped-particle modes in the presence of

additional imposed electric or magnetic “tilt” asymmetries (m = 1, kz = π/Lp).
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The normalized asymmetry-induced expansion rate was convincingly determined

to scale with the trapped-particle mode damping rate for this particular configu-

ration according to [KABANTSEV et al., 2003; KABANTSEV and DRISCOLL, 2003c]

νp ≡
1

〈r2〉
d〈r2〉
dt
≈ 6.3× 10−5 γa

(
N tr
L

NL

)(
eN2

L

B

)(
Lp
Rw

)2

[αB + αE]2 (3.51)

where νp is the normalized expansion rate, γa is the trapped-particle mode damp-

ing rate, (N tr
L /NL) is the fraction of trapped particles, αB is the magnetic asym-

metry tilt αB = (Bx/Bz)x̂ + (By/Bz)ŷ, and αE is the electric asymmetry tilt αE ∝

(Vx/2eNL)x̂ + (Vy/2eNL)ŷ. The implied transport mechanism is that particles will

become trapped axially in an electric asymmetry potential, and a trapped parti-

cle mode will imperceptibly grow. Some of the trapped particles the mode has

promoted to a larger radius will undergo velocity scattering collisions that con-

vert them to passing particles, and they will effectively take a radial step. These

passing particles will in turn be trapped at the larger radius and again moved fur-

ther out by the mode and collisions. The damping rates measured in experiments

with electrically trapped particles and m = 1, kz = π/Lp magnetic asymmetries

are in quantitative agreement with the theoretical description of the trapped par-

ticle mode damping [HILSABECK et al., 2003] and readily reproduced in computer

simulations [MASON, 2003].

Particles trapped in magnetic asymmetry potentials also contribute to the

asymmetry-induced expansion, but the nature of the trapped particle modes in

this case have not been determined or measured. The preliminary scaling for mag-

netically trapped particles with additional “tilt” asymmetries is [KABANTSEV et al.,

2003]

ν(M)
p ∝

(
N tr
L

NL

)0 (
eN2

L

B

)(
Lp
Rw

)2

[αB + αE]2, (3.52)
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which, surprisingly, is not a function of the trapped particle fraction. The normal-

ized expansion rate scalings for both electrically and magnetically trapped parti-

cles were determined by imposing a trapping potential at the axial center of the

plasma, so they don’t necessarily apply directly to cases with axially offset or mul-

tiple trapping asymmetries (such as ripple in the magnetic field). Even so, the

measurements show νp ∝ γa/B ∝ B−1.5–B−2 for electrically trapped particles,

νp ∝ αEL
2
p ∝ L2

p for electrically trapped particles in the presence of a magnetic

tilt asymmetry, and νp ∝ αEL
2
p ∝ L−2

p for electrically trapped particles in the

presence of an electric “tilt” asymmetry, and the first two scalings agree with the

τn0/2 ∝ (Lp/B)−2 scaling measured in earlier studies. Overall, the experiments

suggest that axial trapping of particles is critical for asymmetry-induced trans-

port, and that magnetically trapped particles interacting with additional magnetic

asymmetries are responsible for the inherent asymmetry-induced transport due to

collective effects in existing traps (though the τn0/2 ∝ (Lp/B)−2 scaling is consistent

with both equations 3.51 and 3.52).

Asymmetry-induced expansion is the dominant particle transport mechanism

at low pressures (P < 10−8 Torr in EDG), and may fortunately be treated as an

offset for pressure-induced expansion since it has no explicit scaling with pressure.

3.3.2 Plasma Evolution at Higher Pressures

For pressures where the electron-neutral collision frequency is much greater

than the electron-electron collision frequency (νen � νee), Douglas and O’Neil pos-

tulated that an infinite-length plasma expands with the characteristic time scale
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[DOUGLAS and O’NEIL, 1978]

τexp =
1

νen

Ω2
c

ω2
p

=
1

2

1

νen

Ωc

ωE×B

(3.53)

from the form of the Boltzmann equation expanded in orders of 1/B. This char-

acteristic time has also been shown to describe plasmas where νen � νee using

fluid equations [DAVIDSON and MOORE, 1996]. The time for the electron density

at r = 0 to drop by a factor of two, τn0/2, and the time for the total number of

electrons N to drop by a factor of two, τN/2, were indeed measured to increase lin-

early with pressure in this regime [MALMBERG and DRISCOLL, 1980; DEGRASSIE

and MALMBERG, 1980], though the the plasmas used for the measurements did

extend radially to the trap electrodes. The equation for the plasma expansion rate

(Eq. (3.46)) in section 3.2, which was determined from the fluid equations (3.38)–

(3.45) and assumes νen � νee [equivalently, T 6= T (r)], matches Eq. (3.53) in the

limit T → 0 with the identifications 〈r2〉 → R2
cold = NL/(π

∫
dz n(r = 0, θ, z)) and

1/τexp ∼ (1/〈r2〉)d〈r2〉/dt. Applying either Eq. (3.53) or Eq. (3.46) to data in the

regime νen � νee effectively ignores the effects of temperature gradients in the ex-

panding plasma. In this regime, temperature gradients are expected to arise [DOU-

GLAS and O’NEIL, 1978] because more-energetic particles escape the trap (radially)

more quickly than less-energetic particles do and the plasma doesn’t have enough

time to thermally equilibrate.

The electron-neutral collision frequency νen may be represented as

νen = nn

∫ ∞
0

dv σ v P (v) ≡ nn〈σv〉 (3.54)

where nn is the neutral gas density, σ is the momentum-transfer collision cross sec-

tion of the gas molecules to electron impact [Eq. (A.3)], v is the electron velocity,

P (v) is the probability distribution function giving the fraction of electrons with
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electron velocity v, and the “volumetric collision rate” 〈σv〉 is essentially the vol-

ume a typical particle sweeps through between collisions. The electron-neutral

collision frequency in EDG can be estimated using the volumetric collision rates

〈σv〉 for Maxwellian P (v) (reproduced from Dr. Chao’s thesis in Appendix A) and

an estimate for nn that treats the neutral molecules as an ideal, room-temperature

gas:

nn =
P

Tn
= P [Torr] · 3.22× 1016 (3.55)

The point where νen ≈ νee is P ≈ 1.2 × 107 Torr in EDG for a 1 eV plasma with

B = 600 G and n0 ≈ 1× 107cm−3.

Equations regarding the behavior of the plasma in the pressure range where the

electron-neutral collision frequency and the electron-electron Coulomb collision

frequency are similar in magnitude (νen ∼ νee) have been obtained by Malmberg

and Driscoll [MALMBERG and DRISCOLL, 1980], though they do not take into ac-

count the effects of Debye-length-scale interactions (see section 3.1.2) on the energy

transport.

3.4 m = 1 Diocotron Mode Evolution

Diocotron modes are low-frequency (ω � ωpe � Ωc), electrostatic waves that

propagate azimuthally across the magnetic field in non-neutral Malmberg-Penning

trap plasmas. The density and potential perturbations for an infinite-length plasma

are of the form

δn ∼ δn(r) exp[i(mφ− ω∞t)], (3.56)

where m is the azimuthal mode number, and ω∞ is the mode frequency. The fre-

quency of small-amplitude (D/Rw � 1) m = 1 modes was determined to be
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[LEVY, 1968; DAVIDSON, 1990]

ω∞ =
2ecNL

R2
wB

(3.57)

using a perturbative analysis. The m = 1 diocotron mode may also be described

as a radial displacement D from the trap axis of an otherwise unperturbed plasma.

The plasma is then in a dynamical equilibrium state, and the plasma axis rotates

around the trap axis in the E×B direction at the mode frequency (nominally, ω∞).

3.4.1 m = 1 Diocotron Mode Frequency

The m = 1 mode frequency in finite-length plasmas is predicted to be higher

than the infinite-length-plasma estimate ω∞ in Eq. (3.57). Considering the plasma

to be in the off-axis dynamical equilibrium, the frequency for a constant-density,

constant-temperature plasma is predicted to be [FINE and DRISCOLL, 1998]

ω1

ω∞
= 1 +

(
Rw

Lp

)[
j01

2

(
1

4
+ ln

(
Rw

Rp

)
+

T

NLe2

)
− 0.671

]
, (3.58)

where j01 is the first zero of the Bessel function J0(x). The term 0.671(Rw/Lp) is

the correction to the effective field the plasma feels from the image charges on the

trap electrodes (because the image charges are more diffuse near the end of the

plasma). The terms with the coefficient j01/2 account for the radial component of

the force from the confining potentials at either end of the plasma. This equation

was shown to be in good agreement with experiments where Rw/Rp, T , and Lp

were varied [FINE and DRISCOLL, 1998].

For comparison, a perturbative analysis using fluid equations previously yielded

the frequency [FINE, 1988; PRASAD and O’NEIL, 1983]
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ω1

ω∞
= 1 +

(
Rw

Lp

)
f1

(
Rp

Rw

)
(3.59)

' 1 +

(
Rw

Lp

)[(
1.30− 1.08

Rp

Rw

)(
Rw

Rp

− Rp

Rw

)]
. (3.60)

for a constant-density plasma with constant length Lp and a short electron mean-

free-path (νee � ωb). The function f1(Rp/Rw) is estimated [FINE, 1988] for the

range 0.1 < Rp/Rw < 0.8 from Fig. 6 of reference [PRASAD and O’NEIL, 1983].

A subsequent Vlasov derivation [PRASAD and O’NEIL, 1984] expanded the drift-

kinetic equation and Poisson’s equation in terms of Bessel and cosine functions and

allowed particles to bounce axially (νee ≤ ωb), producing the same functional form

as Eq. (3.60) and a slightly enhanced result for f1(Rp/Rw). Equation (3.60) predicts

larger frequency shifts than those observed in the experiments, where νee � ωb

[FINE and DRISCOLL, 1998].

In addition to finite-length effects, the mode frequency is measured to increase

as the mode amplitude becomes a substantial fraction of the wall radius (D/Rw .

1) and the plasma is distorted azimuthally [FINE et al., 1989]. Again considering

the response of a plasma in the dynamical equilibrium produces the frequency

shift [FINE, 1992]
ω1s

ω1

= 1 +
(
D

Rw

)2

− 1

2
q2

(
Rp

Rw

)2

(3.61)

where ω1s is the shifted frequency, ω1 is the unshifted, finite-length frequency, and

q2 is the quadrupole moment of the plasma density perpendicular to the trap axis

q2 ≡
∫
dx dy (y2 − x2)n(x, y, z = z0)∫
dx dy (y2 + x2)n(x, y, z = z0)

. (3.62)

The origin of the coordinate system used to compute q2 is at the centroid of the den-

sity distribution n(x, y, z = z0), the y axis lies along the major axis of the plasma

cross section (ostensibly in the azimuthal direction), and the x axis should be in
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the radial direction. The term (D/Rw)2 in Eq. (3.61) comes from a more careful

estimate of the effective electric field the displaced plasma experiences from its

image charges. The term −(1/2)q2(Rp/Rw)2 describes the decrease in the effective

electric field the plasma experiences due to the plasma’s distortion along the inner

surface of the grounded trap electrodes (the plasma cross section becomes approx-

imately elliptical, and the image charges on the electrodes can also spread out az-

imuthally). The relationship q2 = 16.7(Rp/Rw)4(D/Rw)2 describes the plasmas in

the experiments well [FINE et al., 1989], and Eq. (3.61) is then in good agreement

with the measured frequency shift

ω1s

ω1

= 1 +

[
1− 7.3

(
Rp

Rw

)6
] (

D

Rw

)2

(3.63)

The measurements also match the predictions of a fluid theory [PRASAD and MALM-

BERG, 1986] at small displacements D/Rw . 0.1. The useful result in Eq. (3.61)

from the simple dynamical equilibrium model has been explained more carefully

and extended to more realistic density profiles using fluid equations [CORNGOLD,

1996].

Equations (3.58) or (3.60) and Eq. (3.61) can be easily combined to make a more

complete prediction of the finite-length plasma diocotron mode frequency.

3.4.2 m = 1 Diocotron Mode Growth Rate

Them = 1 diocotron mode in an infinite-length plasma is not predicted to grow

or damp [LEVY, 1968]. For finite-length plasmas, however, there are several effects

that contribute to the growth rate of the m = 1 diocotron mode.

Even in the absence of trap field imperfections, the m = 1 diocotron mode is

damped by “rotational pumping” [CLUGGISH and DRISCOLL, 1996; CROOKS and
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O’NEIL, 1995; CLUGGISH and DRISCOLL, 1995], where the radial dependence of

the confining potentials allow the plasma to expand and drain angular momentum

from the mode. The growth rate for ωb � ωE×B is calculated to be [CROOKS and

O’NEIL, 1995]

γrp = − 1

N
C2

∫
d3r 2νT n(r) r3 T[

−e∂Φ
∂r

] 1

L2
PR

2
w

(3.64)

where C is a numerical constant and Φ is the potential in a frame rotating at the

diocotron mode frequency ωD. In the coordinate system centered on the plasma

axis, Φ = φ(r)−ωD Br2/(2c), and ωE×B = (c/Br)∂Φ/∂r = ωr −ωD. Equation (3.64)

may be estimated for a isothermal, constant-density plasma with radius Rp to be

γrpest = −2C2νT

(
λ2
D

L2
p

)
(
Rp
Rw

)2

1−
(
Rp
Rw

)2

 (3.65)

where C ' 2.4, but good agreement with the data instead requires numerical in-

tegration of Eq. (3.64) using realistic density profile data that describes the ends

of the plasma well [Eq. (3.65) is consistently a factor of 4–6 too low]. The temper-

ature and magnetic field dependence of this damping is the same as that of the

anisotropic temperature equilibration rate νT , so the damping is strongly depen-

dent on plasma temperature and only weakly dependent on magnetic field (where

Ωc < v̄/b). For the regime ωE×B � ωb > νee, resonant particle interactions are

predicted to amplify the growth rate in Eq. (3.64) by the factor

(γrp)res

γrp

=
1

64

√
π

2

ω6
R

ω5
bνT

exp

(
− ω2

R

8ω2
b

)
. (3.66)

For small-filament plasmas in EDG, ωE×B/2π ∼ 0.3 MHz, ωb/2π ∼ 1.4 MHz, νT ∼

300 Hz, and 5× γrpest ∼ −0.7 /s.

Rotational pumping can be understood by considering the motion of an indi-

vidual flux tube in the plasma [CROOKS and O’NEIL, 1995]. Since the plasma may
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be described as a largely unperturbed, off-axis, dynamic equilibrium in the pres-

ence of the m = 1 mode, it continues to rotate around its axis of symmetry at the

rotation frequency ωr. As the displaced plasma rotates around its axis, any par-

ticular flux tube in the plasma will experience confining voltages that vary as it

moves towards and away from the trap axis (between its own particular “perihe-

lion” and “aphelion”, if its distance from the plasma axis is greater than D). The

flux tube oscillates in length as a result, and its parallel temperature along the field

line also oscillates. Electron-electron collisions attempt to equilibrate the perpen-

dicular temperature with the changing parallel temperature, and, on average, the

flux tube is heated, draining electrostatic energy and causing the plasma to ex-

pand. This expansion also requires angular momentum, which is only available

from the mode, so the mode damps. The total canonical angular momentum in

the presence of a diocotron mode for a rotationally symmetric plasma is simply

[CROOKS and O’NEIL, 1995]

L ' −eB
2c

N
[
〈r2〉+D2

]
, (3.67)

[compared with Eq. (3.4)], which may be determined from the vector form of

Eq. (3.2) with the identification rj → rj + D.

Finite resistance in any of the trap electrodes (especially the zero-Volt electrodes

next to the plasma) can allow imperfections in the trap fields that cause the mode to

grow. This “resistive wall” effect is readily observed [CHAO et al., 2000], and may

be used to strongly excite the m = 1 mode. For a resistance R and capacitance C

in parallel between the point of zero potential (machine ground) and an electrode

segment ∆φ wide (azimuthally) and Ls long (see Fig. 2.28), the m = 1 diocotron
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mode growth rate is predicted to be [WHITE et al., 1982]

γR =
1

π2

L2
s

Lp
ω2

1s

(
sin2 ∆φ

2

)(
R

1 + (ω1sRC)2

)
, (3.68)

where Lp is the plasma length and ω1s is the mode frequency. The electrode seg-

ment impedance allows small voltages to exist on the segment as the plasma passes

by, since the plasma induces currents to it from machine ground Equation (3.68) is

derived by setting the change of the plasma potential energy to the power dissi-

pated by the impedance, using the image charge current expression in Eq. (2.21).

Note that this is appropriate because the m = 1 mode is a negative-energy mode,

meaning that it is energetically favorable for the plasma if the mode’s amplitude

increases (since the trap electrodes surrounding the plasma are at a potential of

zero Volts). The minimum resistive wall growth for the EDG plasma is caused

by the input impedance of the diocotron mode diagnostic amplifiers, and this

impedance has been chosen to minimize any excitation of the mode; in EDG,

(γR)min ' 5.6× 10−4 s−1 for R = 100 MΩ, C = 2.6 nF, and ωD = 200 kHz.

A small number of ions in the trap can also cause the m = 1 diocotron mode

to grow. For ions that are completely trapped in the plasma’s potential well (e.g.,

in an infinite-length plasma), this phenomenon is called the ion resonance instabil-

ity [DAVIDSON, 1990; LEVY et al., 1969; DAVIDSON and UHM, 1977, 1978]. In this

case, the ions rotate in the trap at a different rotation frequency than the electrons,

causing an azimuthal two-stream instability that grows exponentially. Ions in a

finite-length trap generally escape the plasma axially, even if only to be trapped

in one of the confining potential wells. Studies of these “transient” ions generated

by ionization of the background gas by warm (T & 4 eV) plasmas showed that

the diocotron mode grew linearly with time, at a rate that was linearly dependent

on the number of ions escaping the plasma [PEURRUNG et al., 1993]. Rather than
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a sharp resonance between the diocotron mode frequency and the oscillation fre-

quency of the ions in the plasma as predicted before [LEVY et al., 1969], a broad

resonance was seen, and is much better explained by a theory allowing continual

axial loss of the generated ions [FAJANS, 1993].

The presence of accumulated “transiting” ions passing through an electron

plasma axially has recently been observed to cause substantial growth of m = 1, 2,

and 3 diocotron modes [KABANTSEV and DRISCOLL, 2003b]. This mechanism is

quite similar to the “transient ion” resonance instability observed by Peurrung

[PEURRUNG et al., 1993], but is enhanced by the ability of the UCSD trap to store

the ions introduced [KABANTSEV and DRISCOLL, 2003b]. The transiting ions in

these experiments were created by ionization of the background gas either near

the electron source or in the bulk of the plasma, and were trapped between the

positively charged electron source grid and a positively charged density diagnos-

tic on the far end of the trap (such as a phosphor screen density diagnostic) where

they would accumulate. The mode was observed to grow exponentially due to

the accumulation of the transiting ions, but its growth rate dropped immediately

by a factor of 10 when the accumulated ions were released from the trap and only

transient ions remained. The growth rates measured were linearly proportional to

the ion accumulation rate in the trap (γm ∝ κmν+), with constants of proportion-

ality κm much greater than 1 (κ1 ∼ 400). In EDG, the electron temperature is low

enough that no ions should be created by the plasma electrons, and any transiting

ions would flow into the trap from the area of the filament. There is no quanti-

fied mechanism at present that describes the generation of ions near the filament

assembly, however.
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Finally, the direct influence of background gas on the plasma is predicted to

cause exponential growth of the m = 1 mode at the growth rate [DAVIDSON and

CHAO, 1996b,a]

γn =
νen
Ωc

ω1s (3.69)

for elastic collisions between the plasma electrons and gas molecules, where ω1s

represents the real m = 1 mode frequency. The fluid theory used for this estimate

only describes mode growth that is quick enough that the plasma density profile

changes very little during the mode evolution. The computed growth rate γn ∼ 3×

10−6 s−1 for EDG plasmas at P = 1×10−10 Torr is much smaller than the minimum

normalized expansion rate νp ≡ (1/〈r2〉) d〈r2〉/dt ∼ .05 s−1 due to asymmetry-

induced expansion, so this effect is not measurable in EDG.

In addition to these known mechanisms for mode growth and damping, an

unexplained exponential damping was observed previously on the EDG device

[CHAO et al., 1999c] that appeared to vary as γunex ∝ (NL/B)2 ∝ ω2
D. By choos-

ing appropriate values of the line density and magnetic field, this (NL/B)2 damp-

ing can be minimized for EDG experiments. Note that this (NL/B)2 scaling dis-

agrees completely with the scaling of rotational pumping, which is very insen-

sitive to density and magnetic field, but agrees with the scaling of certain types

of asymmetry-induced expansion. Also, the estimated characteristic density re-

laxation rates from Eqs. (3.21) and (3.24) show that the density profile relaxation

scales roughly as (n/B)2,

1

τE×Bn

∝
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n

B

)2

ln
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b4mecv̄

e

(
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1

B

mecv̄

eb

)
, (3.70)
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leaving open the possibility that the plasma relaxation to thermal quasi-equilibrium

is somehow coupled to the mode evolution.

The measured growth rates for the (NL/B)2 damping were also compared with

a prediction based on coupling between the m = 1 mode and Landau-damped,

kz 6= 0 modes (Trivelpiece-Gould modes) [PRASAD and O’NEIL, 1984], which was

given by

γmc = −(0.4)
2λd
Lp

(ωr − ω∞)2

ωp
ln

(
ωp

(ωr − ω∞)2

)
(3.71)

for a constant-density plasma with flat ends, ωp � ωc, and Rp � Lp. Equation

3.71 has a similar scaling with NL and B [γmc ∝ (NL/B)2 ln (B/NL), since ω∞ =

ωr(Rp/Lp)
2 for a constant-density plasma], but is only applicable in the limit where

1� (mωr − ωD)/ωp � (λD/Lp), which isn’t satisfied by EDG parameters: ((mωr −

ωD)/ωp ≈ 8× 10−3) ≯ ((λD/Lp) ≈ 1.4× 10−2). The growth rate predicted with this

formula for typical small-filament plasma parameters is γmc ≈ −110 /s, which is

much larger than any of the growth rates observed in EDG. Equation 3.71 was also

clearly argued to be and shown to be a poor prediction of the plasma growth rate

in the similar EV device at UCSD [FINE, 1988].

3.5 Summary of Theoretical Predictions

In this chapter, several current descriptions of the behavior of plasmas in

Malmberg-Penning traps were reviewed. The relatively good confinement of par-

ticles in these traps is understood as the manifestation of powerful conservation

constraints on the particle motion, and only imperfections in the trap fields or vac-

uum can allow particles to eventually escape from the trap radially. When the
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torques from these imperfections are small enough, the plasma is predicted to re-

lax to a thermal quasi-equilibrium profile with a uniform electron temperature,

and the radial density profile and several other quasi-equilibrium quantities have

been derived to describe the plasma’s evolution in this state. The mechanisms in

the plasma that help it relax to this quasi-equilibrium state from any initial state

have also been described, and new effects in cross-field particle and energy trans-

port have been discovered in these traps that add to our general knowledge of

plasma behavior. The dynamics of a particularly well studied electrostatic wave,

the m = 1 diocotron mode, have also been presented. This collection of theoretical

efforts provides many useful tools for describing the phenomena observed in the

EDG device.



Chapter 4

Measurements of Plasma Expansion

and Temperature Evolution

The EDG experimental device was originally constructed in order to determine

whether measurements of electron plasma expansion at low background gas pres-

sures could be quantitatively predicted as a function of the background gas pres-

sure, and this model system used as a standard for pressure measurement. Ac-

cording to the predictions in sections 3.2 and 3.3.2, elastic collisions between the

EDG plasma electrons and the background gas molecules should cause the plasma

to expand, with the liberated electrostatic potential energy converted to particle

kinetic energy. In this chapter, we will describe measurements of the plasma ex-

pansion (section 4.2) and the accompanying changes in the plasma temperature

(section 4.3).

93
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4.1 Expansion Rate Determination

To determine the expansion rate for an EDG plasma, radial density profiles

(such as those in Fig. 4.1) are recorded at different points in the plasma evolution,

the mean-square radius of each profile is calculated, and the slope of the mean-

square radius data versus time is considered to be the expansion rate. In most

cases, we fit some subset of the mean-square radius data with a line to obtain

the slope. This approach is reasonable if the change in temperature (and there-

fore the collision frequency) is negligible for the data subset we are fitting, be-

cause these are the only two time-varying quantities in the predicted expansion

rate [Eq. (3.46)].

The plasma’s mean-square radius is estimated from a measured, axially inte-

grated density profile Q(r) according to

〈r2〉 =

∫ Rw
0 dr 2πr (r2)Q(r)∫ Rw

0 dr 2πr Q(r)
, (4.1)

where the total number of electrons in the trap N =
∫ Rw

0 2πr dr Q(r), and the inte-

grals are evaluated numerically using the five-point, Newton-Cotes algorithm in-

cluded in the programming language IDL (version 5.3, routine int tabulated ).

For a density diagnostic with infinite radial resolution, the axially integrated den-

sity profile would simply be Q(r) =
∫
dz n(r, φ0, z). For the Faraday-cup density

diagnostic, Q(r) may be related to the true electron density n(r′, φ, z) by

QF (r) = − e

Ah

∫ L

0
dz
∫
Ah

dr′ dφn(r′, φ, z), (4.2)

where Ah is the area of the collimating hole, L is the trap length, and n(r′, φ, z) is

the three-dimensional number density of the plasma electrons. For the phosphor
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Figure 4.1: Evolution of density profiles in EDG at P ∼ 6×10−9 Torr. The solid lines
are the fitted, thermal quasi-equilibrium profiles predicted with the fluid theory.
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screen density diagnostic, Q(r) is approximately

QP (r) = − e

2πr δr

∫ 2π

0

∫ r+δr

r
r′ dr′ dφ

∫ L

0
dz n(r′, φ, z), (4.3)

where Ap = δr2 is the approximate area of the screen that one CCD camera pixel

sees. The axially integrated density profile from the phosphor screen diagnostic is

actually determined by taking the medians of the image data in azimuthal rings of

radial width δr, as described in section 2.2.2 , and is better expressed as

QP (r) = − e

(δr)2

Median

∫ L

0
dz

∫
Ap(r′)

dr′′ dφn(r′′, φ, z)


∣∣∣∣∣∣∣ r ≤ r′ < r + δr

 . (4.4)

The uncertainty in the experimentally determined mean-square radius for a

given density profile is estimated from the standard errors of the mean for Q(r),

σQ(ri), at each radial location ri in the profile, and is used to determine the uncer-

tainty in the computed expansion rate. Specifically, the mean-square-radius un-

certainty is approximated by calculating the uncertainty of this less-sophisticated

computation of the mean-square radius:

〈r2〉 =

∑
i

(2πri δr) r
2
i Q(ri)∑

i
(2πri δr)Q(ri)

. (4.5)

The result is [CHAO, 1999]

σ2
〈r2〉 =

1

Nsum

∑
i

(
2πri δr r

2
i σQ(ri)

)2

=
(2πδr)2

Nsum

∑
i

r6
i σ

2
Q(ri)

(4.6)

where σQ(ri)
= σQ(ri)/

√
mi is the uncertainty of the mean density measurement

at r = ri, mi is the number of density measurements at r = ri, and Nsum =
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∑
i (2πri δr)Q(ri) is the denominator of Eq. (4.5). The uncertainty in the numeri-

cally integrated value N ≡
∫ Rw

0 2πr dr Q(r) ≈ Nsum is often neglected in the com-

putation of σ〈r2〉, as it is usually at least a factor of two smaller than the contribu-

tions from σQ(ri)
.

The uncertainty in the plasma expansion rate is determined by the algorithms

used to fit the mean-square-radius evolution, and is calculated automatically by

the fitting routines in the programming environment IDL. The routine linfit in-

cluded in IDL 5.3 was used primarily, and it was made from the routines fit.c ,

gammq.c , gser.c , and gcf.c from section 15.2 of “Numerical Recipes in C”

[PRESS et al., 1992]. The curvefit routine in IDL 5.3 was also used, and is an

implementation of the function curfit [BEVINGTON and ROBINSON, 1992] which

uses a modified Marquardt algorithm [MARQUARDT, 1963].

It is important to note that the Q(r) used for the mean-square radius determi-

nations are ignored past a chosen plasma-edge radius Redge; specifically, Q(r >

Redge) ≡ 0. This is necessary because small errors in the profile due to detector

noise can contribute considerably at higher radii to the 〈r2〉 computation, as they

are amplified by the factor r3 in the numerical integral in Eq. (4.1) (see Figures 4.2

and 4.3). For profiles taken with the Faraday-cup density diagnostic, Redge is de-

fined as the last radial point in the profile before the measured Q(r) is negative

(due to the noise). For profiles taken with the phosphor screen density diagnostic,

Redge is taken to be the first radial point where the profile data drops within one

standard deviation of zero [see Fig. 4.2], although for some of the phosphor-screen

data presented in this thesis Redge was defined as a weighted average between the

point where Q(r) is 5% of the peak value max(Q(r)) (weighted by 4/5 ) and the

radial point where the digitized profile data values stop changing with increasing
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Figure 4.2: This is the density profile from Fig. 4.1(b), except with error bars rep-
resenting the standard deviation of the points at a particular radius rather than
the standard deviation of the mean of the points. The solid line is again the fitted
thermal quasi-equilibrium profile predicted with the fluid theory. The root-mean-
square radius and edge radius are marked in the plot, and the two different edge
radius definitions described in the text coincide for this density profile.
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Figure 4.3: Displayed here is the product of the profile in Fig. 4.2 and r3, where
the circles represent the data that is ignored in the mean-square-radius calculation.
The root-mean-square radius and edge radius are again noted, and the two differ-
ent edge radius definitions described in the text coincide for this density profile.
Including the data beyond Redge in the calculations (and keeping the same density
normalization) would increase the apparent total charge by only 3.7% but increase
the calculated mean-square radius by 15%.



4.1. Expansion Rate Determination 100

1.0 1.5 2.0 2.5
Original R edge (cm)

1.0

1.5

2.0

2.5
N

ew
 R

ed
ge
 (

cm
)

P=2×10−6 Torr
P=5×10−8 Torr
P=6×10−9 Torr

P=2×10−10 Torr

B = 600G

Figure 4.4: Comparison of Redge computations. The “new” Redge is defined as the
first radial point where the profile data drops within one standard deviation of
zero, and the “old” Redge is close to the point where the profile drops to 5% of
the peak profile value max(Q(r)). The solid line is the line (“new” Redge) = (“old”
Redge).

radius (weighted by 1/5 ). This latter, complicated definition for the phosphor-

screen data’s Redge was developed because of the unexplained long tails in the

density distribution [e.g., see Figures 4.2, 4.1(a), and 4.1(b)]. These tails may be

due to unaccounted-for background light reflecting off the phosphor screen, an

unidentified imperfection in the profile determination from the raw image data,

a focusing problem with the camera optics, or unexpected scattering in the phos-

phor itself. The two definitions for the phosphor-screen data’s Redge usually result

in similar values, as illustrated in Fig. 4.4.

In nearly all of the calculations in this thesis of quantities derived from radial

electron density profiles, the measured, axially integrated electron density profiles
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were used directly. The axially integrated electron density profile is not the same

as the true radial density profile because the radially dependent confining poten-

tials cause the plasma’s ends to be curved [Lp = Lp(r)]. A better estimate of the

true radial density profile (that exists far from the trap’s confining electrodes or in

an infinite-length electron plasma) can be obtained for plasmas in thermal quasi-

equilibrium by solving Poisson’s equation [Eq. (3.28)] numerically in the region

inside the trap electrodes [CHAO, 1999; CHAO et al., 1999a]. This is accomplished it-

eratively by alternately assigning a Boltzmann distribution to the plasma electrons

[n(r, z) ∝ exp {eφ(r, z)/T}, with constant temperature T] to obtain an estimate for

n(r, z), and solving Poisson’s equation to obtain the corresponding φ(r, z). Each

new solution of φ(r, z) is used to make a better estimate for n(r, z), and eventually

the plasma and vacuum fields relax into an equilibrium. Programs incorporating

this algorithm have been used by several experimental groups (including EDG)

to make better radial density profile estimates, but the axially integrated profiles

have been used here instead for several reasons: (1) The inferred temperature and

mean-square-radius values calculated using the measured, axially integrated, ra-

dial density profiles do not differ significantly from those calculated using the bet-

ter radial density profile estimates (this is determined for large-filament plasmas);

(2) the “Poisson solver” code that performs the density profile estimation is com-

putationally intensive; (3) the “Poisson solver” code does not always converge on

a numerical solution, and has an especially difficult time converging when noise

in the measurements makes Q(r) non-monotonically-decreasing (which is the case

for the high-resolution phosphor-screen data); (4) not all the plasmas measured

are in thermal quasi-equilibrium; and (5) the temperature inferences necessary

to make the self-consistent density profile estimates have not been unequivocally
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demonstrated to be representative of the true plasma temperature, even for plas-

mas in thermal quasi-equilibrium.

The overall effect of not accounting for the curved ends of the plasma is that the

axially integrated density profiles are enhanced over the true radial density profiles

near the trap axis. This should cause the inferred temperatures to be artificially

low, the calculated mean-square radii to be artificially low, and, since the relative

discrepancy becomes greater as the plasma expands, the determined expansion

rates to be artificially low. These discrepancies will also be smaller for the small-

filament data, generally, because plasmas formed with the smaller filament interact

with an effectively more uniform confining field than the larger plasmas do.

Lastly, there is also a radially varying background for the axially integrated

density profiles that can be obtained by performing the image profile calculation

on an image with no plasma. While this apparently computational artifact is un-

characterized, it’s maximum amplitude is not a substantial fraction of the signal

at the plasma center. This background is thought to be related to the unexplained

long tails in the density profiles.

4.2 Expansion Rate Scaling with Pressure

4.2.1 Review of the Previous Data

The expansion of electron plasmas due to background gas was first explored

with measurements of the density evolution at r = 0 [MALMBERG and DRISCOLL,

1980; DEGRASSIE and MALMBERG, 1980]. The characteristic quantities τn0/2, the

time for the density at r = 0 to decrease to half of its initial value; τN/2, the time

for the plasma to lose half of its electrons radially to the trap electrodes; and τn, the
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rate of increase of the inverse central density τn = (d/dt)[1/n(r = 0, t)], were all ob-

served to vary approximately as B2/P at higher pressures, in agreement with the

simple scaling from the Boltzmann equation predicted in Eq. (3.53). At pressures

below P = 107 Torr, the quantities τn0/2 and τN/2 were observed to be indepen-

dent of pressure, and the plasma’s minimum level of expansion was later demon-

strated to be due to imperfections in the trap construction (asymmetry-induced

expansion), as described in section 3.3.1. For the measurements of τN/2 and τn,

the plasmas extended radially to the trap electrodes, and presumably had some

uncharacterized interaction with them.

Initial measurements of the plasma’s expansion rate as a function of pressure

in EDG [CHAO et al., 2000; CHAO, 1999; CHAO et al., 1999b] suggested that the

plasma expands at a rate more than four times faster than that predicted by the

uniform-temperature plasma expansion rate [Eq. (3.46)]

d

dt
〈r2〉 =

2NLe
2

me

νen(t)

Ω2
c − ν2

en(t)

(
1 +

2T (t)

NLe2

)
. (4.7)

This data, in the range 10−8 Torr < P < 10−6 Torr in Fig. 4.5, was an improve-

ment over the earlier, r = 0 density evolution data because the EDG plasmas were

clearly not in contact with the trap electrodes and the expansion rate was com-

puted directly from radial density profiles rather than assumed to be proportional

to τn0/2 or τN/2. In addition, the measurement of density profiles provided infor-

mation on the electrostatic potential energy evolution, the evolution of the density

profile shape (giving an indication of how close the plasma state is to a thermal

quasi-equilibrium state), and the effective, inferred temperature evolution from

fitting predicted thermal quasi-equilibrium density profiles to the data. At the

lowest pressures (P . 1× 10−8 Torr), the measured expansion rates in EDG clearly

disagreed with the theoretical prediction, and this threshold level of expansion
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Figure 4.5: Plasma expansion rate as a function of pressure. For this data, B =
610 G and NL = 3.4 × 107 electrons/cm. (Reproduced from [CHAO, 1999], with
permission.)
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was suspected to be the asymmetry-induced expansion observed before. Since

asymmetry-induced expansion has at most a weak dependence on pressure, it is

accounted for by adding an arbitrary offset to the theoretical linear dependence in

Eq. (3.46). This data shows that it is very difficult to unambiguously determine

the gas pressure in EDG below P . 1 × 10−8 Torr using a Faraday-cup density

diagnostic with similar sensitivity.

4.2.2 Large-Filament Data

A natural question evoked by the pressure dependence in Fig. 4.5 is whether the

plasma continues to expand more quickly than predicted at higher background gas

pressures. This question is somewhat academic, since νen > νee above P ≈ 1.2×107

Torr (see section 3.3.2) and the uniform-temperature expansion rate formula in

Eq. (3.46) is no longer necessarily applicable. Equation (3.46) reduces to the simple

Boltzmann equation scaling in Eq. (3.53) for T = 0, however, so the measurement

should still give us insight into whether a factor of four is missing from the theoret-

ical prediction. Furthermore, the different dynamics in a parameter range where

temperature gradients could exist are worthy of study.

The expansion rate data set in Fig. 4.5 was therefore extended to higher pres-

sures [MORRISON et al., 2001, 2002], and the results are presented in Fig. 4.6. In this

figure, the data denoted by circles and squares corresponds to the low-pressure

data set used for Fig. 4.5, the data denoted by diamonds and triangles is the new

data, and the dash-dot curve is the theoretical prediction + offset. The data rep-

resented by diamonds is determined by fitting the mean-square radius evolution

data taken before the point in the evolution where the measured total number of

plasma electrons had decreased by 2%, and the data represented by diamonds is
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Figure 4.6: Plasma expansion rates vs. pressure at B = 610 G for 2.8 × 107 elec-
trons/cm < NL < 3.4 × 107 electrons/cm. The dash-dot theoretical curve uses
T = 2 eV, NL = 3.41× 107 electrons/cm, and an offset of 0.1 cm2/sec.
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determined by fitting the mean-square radius evolution data taken before the mea-

sured total number of electrons had decreased by 5%. The similar expansion rates

estimated from these different subsets of the same mean-square radius evolution

illustrate that the changes in the expansion rate during the plasma evolution (de-

scribed below and displayed in Fig. 4.7) are not dramatic enough to obscure the

linear dependence of the expansion rate on helium gas pressure. The differences

between the expansion rates estimated for different subsets of the evolution give

an indication of the uncertainty in the calculated expansion rates under these trap

conditions.

The new data in Fig. 4.6 is more consistent with the theoretical prediction for

T = 2 eV than for a T = 1 eV theoretical curve with an additional factor of four,

suggesting that the previous data simply did not extend to a high-enough pres-

sure (where asymmetry-induced expansion was sufficiently small compared to the

electron-neutral-collision-dominated plasma expansion) to see the correct pressure

dependence. The absolute pressure reported is measured with ionization gauges

and is therefore only known to be within a factor of two of the true pressure, so it

is possible the measured expansion rates could actually be consistent with either

the prediction for T = 1 eV plasmas or T = 4 plasmas. The plasma temperature

is the only quantity in the uniform-temperature expansion rate formula that isn’t

directly measured in this data set, and though the plasma temperatures inferred

from the higher-pressure density profiles varied in the range 0.2 eV < T < 4 eV

they were generally close to T = 2 eV. If the temperature was definitively known

to be T = 2 eV, the plotted theoretical curve would be an absolute prediction from

the fluid theory.
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Figure 4.7: Mean-square radius vs. time for t < 2 seconds. This data is for the new
expansion rate points in Fig. 4.6.

The mean-square radius data used to estimate the expansion rates in Fig. 4.6

was taken in the first 4.5 seconds of plasma evolution, and there is a noticeable

decrease in the expansion rate towards the end of the evolutions. This is shown

in Fig. 4.7 for the new expansion rate data, which only extended to t = 2 seconds.

At the higher pressures, this phenomenon was suspected to be due to difficulties

in observing diffuse profiles because of diagnostic noise and to interference with

the plasma expansion by the trap electrodes. The latter difficulty is indicated be-

cause the total plasma charge measured with the total collector decreased during

the mean-square radius evolution, as shown in Fig. 4.8. This effect was more pro-

nounced as the background pressure was increased. At the lower pressures, the
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new expansion rate points in Fig. 4.6. The error bars are the standard deviation
of the total charge data taken for the density profile at each point in time. The
lines denoting the level of 98% and 95% charge loss are computed using the t = 0
median total charge for P = 8× 10−6 Torr.
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decrease in the expansion rate was thought to indicate that the plasma tempera-

ture was slowly decreasing with time. The expansion rates displayed in Fig. 4.6

were determined for early subsets of the mean-square-radius evolution in order to

cope with these details. Specifically, the diamonds are calculated using the mean-

square-radius data points measured before the total plasma charge drops by 2%;

the triangles are calculated using the data points measured before the total plasma

charge drops by 5%; the circles are calculated using the data taken in approxi-

mately the first 2.25 seconds of evolution; and the squares are calculated using the

entire, 4.5-second mean-square radius evolution.

The plasma expansion was also measured at B = 300 G for comparison [MOR-

RISON et al., 2001, 2002], and this data is presented in Fig. 4.9. In this data set,

the expansion rate points agree well with the theoretical prediction using T = 1

eV and an offset of 0.5 cm2/sec. The diamonds and triangles are calculated in the

same manner as for the B = 610 G data, and the squares are obtained by manu-

ally choosing the number of mean-square radius values to fit such that only points

with a relatively small calculated uncertainty are included. (Specifically, σ〈r2〉 is

noticeably smaller for the included points than for the excluded points.) The er-

ror bars in the plot are determined using the mean-square-radius measurement

uncertainties σ〈r2〉, but, again, the differences between the different estimates for

the same evolution are also important indications of the precision of the expansion

rate measurement.

In contrast with the B = 610 G data, the temperatures inferred from the axially

integrated density profiles above P = 10−6 Torr in the B = 300 G data increased

quickly from T ≈ 1 eV to T ≈ 4 eV during the evolution. This increase was even

greater for the temperatures inferred using estimated radial density profiles from
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Figure 4.9: Plasma expansion rates vs. pressure at B = 300 G and NL ≈ 2.6× 107

electrons/cm. The theoretical prediction uses T = 1 eV and an offset of 0.5
cm2/sec.
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the “Poisson solver” code. Accordingly, it is not clear why the expansion rates

obtained from these profiles should agree with the T = 1 eV theoretical prediction.

One possible explanation could be that interaction with the trap electrodes was

changing the density profile without affecting the plasma temperature, and such

an effect could only be diagnosed with a direct temperature measurement.

4.2.3 Small-Filament Data

To allay concerns that the slower expansion towards the end of the one-second

mean-square-radius evolutions and the dramatic inferred temperature increases

for the B = 300 G data were due to interference by the trap electrodes, the “large”,

0.5-inch-radius filament was replaced with a smaller, 0.25-inch-radius filament.

The plasmas created with the smaller filament take more time to expand to a given

size than larger plasmas do, and have very similar values of total plasma charge

since both filaments can handle similar amounts of heating current and voltage.

The dependence of the plasma expansion rate on background gas pressure was

measured for smaller plasmas in the same manner as for the large-filament plas-

mas, and the results are displayed in Figures 4.10 and 4.11. In Fig. 4.10, the data

appears largely consistent with the T = 1 eV theoretical curve (using the same

offset as the previous, B = 610 G data set), again supporting the prediction in

Eq. (3.46). The individual mean-square radius evolutions for the small-filament

data have the same decrease in the expansion seen at the end of the large-filament

plasma evolutions, though, suggesting that interactions with the trap electrodes

are having a negligible impact on the density profile evolution in both cases.

The clearest discrepancy between the B = 600 G, small-filament data and the

B = 610 G, large-filament data is that the smaller-filament expansion rates above
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Figure 4.10: Small-filament-plasma expansion rate vs. pressure at B = 600 G. For
this data, NL ≈ 3.4× 107 electrons/cm.
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P ≈ 1 × 10−5 Torr fall below the theoretically predicted curves by as much as

a factor of five. This discrepancy could be due to noise in the density profiles,

but suspiciously coincides with increases in the filament heating voltage (raised

ultimately to Vh = 6.8 V) to counter the decrease in the filament emission and total

plasma charge as the gas pressure is increased. (This decrease is suspected to be

caused by cooling of the filament surface by the gas, which would change the rate

of thermionic emission.) The earlier, large-filament data do not show this feature,

and the heating and bias voltages were hardly changed at all when measuring that

data. In section 5.2.1, the hypothesis that the discrepancy is due tom = 1 diocotron

mode growth is discussed.

Figure 4.11 shows small-filament expansion rate data taken at B = 300 G that

more convincingly follows the theoretically predicted curve for T = 2 eV with an

offset of 0.35 cm2/s. Presumably, this data set has less scatter because the faster

plasma expansion at B = 300 G is more easily measured. The two different ex-

pansion rate computations (for diamonds and triangles) match for several of the

lower-pressure points in Figures 4.10 and 4.11 because less than 2% of the total

charge was lost throughout those expansions and the number of mean-square ra-

dius points used in the calculations is identical.

For the small-filament expansion rate data, thermal quasi-equilibrium profiles

could not be reliably fit to the density profiles. Temperature inferences are there-

fore not available for comparison to the values suggested by the expansion rate

curves. This is because plasmas produced with the smaller filaments are small

enough that the electron density changes appreciably over the area of the collimat-

ing hole (Rp ∼ 4Rh, in fact), and a more complicated profile should be used; to fit

this data, an azimuthally symmetric, theoretical 2-D density profile created from a
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Figure 4.11: Small-filament-plasma expansion rate vs. pressure at B = 300 G. For
this data, NL ≈ 3.3× 107 electrons/cm.
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thermal quasi-equilibrium radial density profile must be integrated over the area

of the collimating hole at each radial location observed. Since the thermal quasi-

equilibrium density profile used to make the 2-D profile is a numerical solution

of Eq. (3.48) and Poisson’s equation [Eq. (3.39)], the integral over the collimating

hole area must also be numerical, and the predicted density profiles are no longer

very sensitive to the inferred plasma temperature due to numerical noise. The pre-

dicted profile measurement is also quite sensitive to the diagnostic alignment with

the trap; if the collimating hole travels across the plasma on a chord that does not

intersect the plasma axis, the integral over the collimating hole area can be strongly

affected (since Rp ∼ 4Rh). In addition, the measured density profiles upon in-

spection appeared somewhat peaked at r = 0, making a fit more problematic [see

Fig. 2.11(b)]. Though no comparison can be made with inferred temperatures, it is

interesting to note that the expansion rate data for the large filament at B = 610 G

and for the small filament at B = 300 G suggest an effective temperature of T = 2

eV, and the expansion rate data for the large filament at B = 300 G and for the

small filament at B = 600 G instead suggest T = 1 eV.

Both the large- and small-filament data suggest a linear dependence of the

plasma expansion rate (d/dt)〈r2〉 on the background gas pressure above a mini-

mum level of expansion. Since the plasma expansion rates measured at higher

pressures where temperature gradients could exist (νen � νee) are consistent with

the rates predicted for uniform-temperature plasmas, it would seem that any tem-

perature gradients in the plasma do not have a dramatic effect on the plasma ex-

pansion.
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4.2.4 Phosphor-Screen Data

The next improvement to the EDG device diagnostic set was the replacement

of the Faraday-cup density diagnostic with a phosphor-screen density diagnos-

tic (see section 2.2.2), which can produce an entire axially integrated, 2-D density

profile for an individual plasma. This new diagnostic allows better measurement

of small-filament plasma density profiles and allows the measurement of density

profiles when large diocotron modes are present. It also eliminates several sources

of noise in the plasma density profiles by both greatly reducing the amount of time

necessary to take the profile measurement and optically coupling the profile mea-

surement to the recording electronics. Each image of a single plasma provides a

better radial density profile than determined previously from a minimum of 85

separate plasmas (17 radial locations × 5 readings) with the Faraday-cup density

diagnostic. Examples of FFT-filtered images of expanding plasmas taken with this

diagnostic are presented in Fig. 4.12.

The speed with which the phosphor-screen density diagnostic can record a 2-D

density profile allows reliable measurement of the plasma evolution well past 1

second before the trap conditions change appreciably. Figure 4.13 shows a plasma

mean-square radius evolution taken with this diagnostic at P ≈ 6 × 10−9 Torr

[MORRISON et al., 2003], where asymmetry-induced expansion is expected to dom-

inate the plasma behavior. The most interesting feature of this data is the nonlin-

ear evolution between t = 0 seconds and t = 3 seconds (the “initial phase” of

the expansion). The rate is clearly changing with time in the initial phase of the

plasma expansion and relaxing to the steady rate observed after t = 3 seconds (in

the “later phase” of the plasma expansion). It is tempting to identify the initial

phase of the plasma evolution as a relaxation to thermal quasi-equilibrium of an
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(a) Trapped for 1/3 s. (b) Trapped for 1 s.

(c) Trapped for 3 s. (d) Trapped for 15 s.

Figure 4.12: Images of expanding plasmas at P ∼ 6×10−9 Torr. These images were
used to determine the density profiles shown in Fig. 4.1.
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Figure 4.13: The plasma mean square radius as a function of time at P ≈ 6 × 10−9

Torr. For this data, B = 600 G and NL ≈ 3.3 × 107 electrons/cm. The agreement
between the data taken while increasing the hold time and decreasing the hold
time (the time the plasma is held in the trap) indicate the plasma’s reproducibility
and the uncertainty in the mean-square radius. The few error bars plotted illustrate
the uncertainty in the mean-square radius due to the nature of the calculation.
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initially non-equilibrium plasma and identify the later phase of the evolution as

the true asymmetry-induced plasma expansion at this pressure. This would mean

that all the expansion rates determined from the Faraday-cup density diagnostic

data were computed for plasmas that were not in thermal quasi-equilibrium. Sup-

porting this hypothesis is the fact that the initial phase of the evolution is observed

to be quite similar for different filament voltages and background gas pressures be-

low P ∼ 2×10−7 Torr. This three-second evolution of the plasma to thermal quasi-

equilibrium disagrees with the estimated characteristic time for density equilibra-

tion of about 30 seconds computed in section 3.1.2, which is interpreted to mean

that a realistic estimate is only possible by taking into account the details of the

plasmas’ density and temperature profiles.

Expansion rates determined from the later phase of the plasma expansion are

compared with the early-phase expansion rates from Fig. 4.10 in Fig. 4.14 [MOR-

RISON et al., 2003]. In Figure 4.14, it is again clear that the late-time expansion

rates can be much lower than what was previously thought to be the minimum,

asymmetry-induced expansion rate in the plasma. The new, late-time rates at the

lowest pressures are expected to be the true asymmetry-induced expansion rates,

and the difference between them and the previous values is characteristic only of

the initial plasma relaxation. In fact, expansion rates estimated from the first ∼ 0.5

seconds of phosphor screen data for the two low-pressure evolutions agree with

the 0.1 cm2/s threshold rate identified in Figures 4.6 and 4.10. At P ≈ 1×10−6 Torr,

where the plasma is expanding much more quickly than the plasma can relax, the

rate computed during the plasma relaxation is indicative of the collisionally in-

duced plasma expansion and agrees fairly well with the previous data set.
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Figure 4.14: Comparison of expansion rates determined from the Faraday-cup and
phosphor-screen density diagnostics for small-filament plasmas at B = 600 G. The
circles denote the new expansion rates obtained by excluding the initial plasma
relaxation where possible.
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Even with the ability to scrutinize extended plasma evolutions, it is apparent

from the difference between the two lowest-pressure late-time expansion rates that

the changes in expansion due to differences in background pressure below P ≈

1× 10−8 Torr are still minute compared to the asymmetry-induced expansion, and

the improved measurements of the expansion rate are not particularly sensitive

indicators of the background gas pressure in this range.

4.3 Temperature Evolution

The best way to determine whether the plasma is in thermal quasi-equilibrium

is to observe its temperature profile. Since this is somewhat difficult to do, more

convenient, r = 0 parallel temperature evolutions have been measured instead.

The plasma temperature is also a factor in the plasma expansion rate, and it is im-

portant to see whether the increasing inferred temperatures observed for the data

in Fig. 4.9 are indicative of the true plasma temperatures. Increasing temperatures

are to be expected because of energy conservation (as described in section 4.3.1),

but have not been observed at the lowest pressures in EDG.

4.3.1 Review of the Inferred Temperature Data

Figure 4.15 shows a comparison between the estimated electrostatic potential

energy per particle and the inferred electron temperatures obtained from the early,

large-filament density profile data. [CHAO et al., 2000] The electrostatic potential

energy per particle is given ideally by

Ue =
1

N

∫
dV
|E|2

8π
= − 1

N

∫
dV

(
enφ

2

)
, (4.8)
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Figure 4.15: Earlier energy evolution results from large-filament plasmas. (Repro-
duced from [CHAO, 1999], with permission.)
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where E = −∇φ is the electric field, and the reported values in Fig. 4.15(a) are com-

puted using the n and φ determined from the Poisson solver code. It is apparent

from Fig. 4.15(a) that electrostatic potential energy is liberated as the plasma ex-

pands. Because (1) collisions between helium atoms and electrons are very elastic

for T < 4 eV, (2) the magnetic field is low enough that very little energy is radiated

from the plasma, (3) the plasmas are well separated from the trap electrodes, and

(4) the computed quasi-equilibrium rotational kinetic energy per electron

Kφ =
1

NL

∫ Rw

0
dr r

me(rωr)
2

2

∫
dz dφn(r, φ, z) (4.9)

=
1

2
meω

2
r〈r2〉 (4.10)

is negligible, one would expect that the plasma would be heated by the additional

energy. Figure 4.15(b) instead shows that the inferred temperatures in the first

second of evolution do not increase with time. The original explanation for this

behavior was that trace amounts of impurity gases (e.g., hydrocarbons, water, ni-

trogen) experiencing highly inelastic collisions with the trapped electrons must be

present to absorb the excess plasma energy. The density evolutions measured with

the phosphor screen diagnostic (e.g., in Fig. 4.13), however, suggest that the plasma

isn’t in thermal quasi-equilibrium until approximately t = 3 seconds, so these tem-

peratures inferred in the early phase of the evolution might not be accurate.

To verify that trace gases are affecting the energy evolution, in Fig. 4.15(b) the

inferred temperature evolution must be shown to be representative of the true elec-

tron temperature evolution and the plasmas must be shown to not be in contact

with the trap electrodes. The best way to verify the temperature inferences is to

compare them with temperatures measured directly, and this is the purpose of

this section. The phosphor-screen diagnostic data described in section 4.2.4 (and
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shown in Fig. 4.1) has indicated that the plasmas are well removed from the trap

electrodes for the first 15 seconds of plasma expansion at P ≈ 6 × 10−9 Torr,

removing the second concern. While using a Residual Gas Analyzer (RGA) to

determine the gas species present in the trap would be a direct way to confirm

that trace gases were involved in the dynamics, no sufficiently ultra-high-vacuum-

compatible RGA was available to make this measurement.

4.3.2 Comparison of Inferred and Measured Temperature Evolu-

tions

The parallel electron temperature evolution at r = 0 was measured at the same

conditions as density profile evolutions at P ≈ 6 × 10−9 Torr and P ≈ 2 × 10−6

Torr [MORRISON et al., 2003]. Figure 4.16(a) shows that the inferred perpendicular

temperatures at P ≈ 6 × 10−9 Torr (determined from the density profiles used

to make Fig. 4.13) do not change appreciably during the plasma evolution, since

the inferred temperatures are only estimated to be accurate to within ±0.25 eV.

Figure 4.16(b) shows the measured temperature evolution for the same plasma

conditions, and it is apparent that the parallel temperature at r = 0 increases by

approximately 1 eV in the first couple seconds of plasma evolution, in contrast with

the inferred temperature evolutions in Figures 4.15(b) and 4.16(a). However, the

measured parallel temperature is only indicative of the temperature at r = 0 rather

than the total plasma kinetic energy until it is certain that the plasma has a uniform

temperature (e.g., in the later phase of the expansion when the plasma is clearly in

thermal quasi-equilibrium). The initial evolution of the measured temperatures,
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Figure 4.16: The inferred perpendicular temperature evolution (a) and the mea-
sured, on-axis parallel temperature (b) at P ≈ 6× 10−9 Torr. For this data, B = 600
G and NL ≈ 3.3× 107 electrons/cm.



4.3. Temperature Evolution 127

which takes approximately 1 second, is consistent with the characteristic energy

transport times of approximately 0.5 seconds estimated in section 3.1.2.

The initial measured temperature increase primarily indicates that the plasma

is relaxing to thermal quasi-equilibrium. This is especially evident because the

measured temperatures do not increase in the later phase of the expansion even

though the plasma expands more in the later phase than it does in the initial phase

(see Fig. 4.13); the estimated electrostatic potential energy evolution in Fig. 4.17(a)

clearly shows that just as much potential energy is liberated after t = 3 seconds

as in the initial expansion. The inconsistency of there being both non-increasing

measured temperatures and decreasing electrostatic potential energy again sug-

gests that trace background gas molecules that undergo inelastic collisions with

the plasma electrons are draining kinetic energy from the plasma. This hypothesis

is consistent with the discrepancy in Fig. 4.16(b) between the data sets represented

by diamonds and triangles because the set represented by diamonds was taken

at a lower partial pressure of gases desorbed from the trap surfaces than the set

represented by triangles. (The partial pressure of these desorbed gases is observed

to increase with time after the filament is turned on.) A higher partial pressure

of the desorbed gas, which presumably contains the trace gas molecules, would

drain energy from the plasma more quickly, explaining why the plasma tempera-

ture decreases more quickly. To make a proper comparison between the change in

electrostatic energy and the change in the plasma temperatures, it should be noted

that the change in the parallel temperature should be ∆T‖ = (1/3) ∆Ue and the

change in the perpendicular temperature should be ∆T⊥ = (2/3) ∆Ue for a given

change in the electrostatic potential energy ∆Ue, because of energy equipartition.



4.3. Temperature Evolution 128

0 5 10 15 20
Hold time (s)

4

5

6

7

8

9

P
ot

en
tia

l E
ne

rg
y 

pe
r 

el
ec

tr
on

 (
eV

)

Increasing hold time, taken first
Decreasing hold time, taken second

Saturated image

B = 600G
P ~ 6×10−9 Torr
Vs = 3400V
Vh = 4.8V
Vb = −16.6V

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Hold time (s)

3

4

5

6

7

8

9

P
ot

en
tia

l E
ne

rg
y 

pe
r 

el
ec

tr
on

 (
eV

)

Increasing hold time, taken first
Decreasing hold time, taken second

Saturated image

B = 600G
P = 2.1×10−6 Torr
Vs = 3350V
Vh = 5.2V
Vb = −16.6V

(b)

Figure 4.17: Estimated electrostatic potential energy evolution. The data in
Fig. 4.17(a) is determined from the axially integrated density profiles used to make
the perpendicular temperature inferences in Fig. 4.16, and the data in Fig. 4.17(a)
corresponds to the data in Fig. 4.18. The potential energy per electron is calculated
by estimating the electric field from the axially integrated density profiles. The er-
ror bars estimated for this data are much smaller than the size of the plot symbols,
and are omitted.
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Temperature measurements were also made at P ≈ 2 × 10−6 Torr, where the

electron-neutral collisions are more frequent than electron-electron collisions (νen �

νee) and temperature gradients could easily form. Figure 4.18(b) shows the mea-

sured temperature evolution at this pressure, which is also seen to increase initially.

The plasma loses 2% of its electrons by about t = 0.4 seconds (not shown), and the

measured temperatures quickly decrease just before that point. It would appear

that the plasma equilibration is interrupted by interactions between the plasma

and the trap electrodes. In contrast, the inferred temperatures from the density

profiles increase dramatically during the evolution [Fig. 4.18(a)], and only stop in-

creasing about the time that the plasma is suspected to be in contact with the trap

electrodes. The measured parallel temperatures at P ≈ 2 × 10−6 Torr do not in-

crease any more than they did at the low pressures in spite of the quick increase

in the inferred temperatures, further supporting the hypothesis that the plasmas

are not in thermal quasi-equilibrium. Since the plasma is apparently not in ther-

mal quasi-equilibrium, the change in the inferred temperatures is only indicative

of how fast the plasma density profile shape is changing as the plasma quickly

expands; the temperatures inferred are not expected to be representative of the

actual temperature profile in the plasma. Trace gases experiencing inelastic colli-

sions with the electrons are again invoked to explain the discrepancy between the

measured temperatures in Fig. 4.18(a) and the calculated change in electrostatic

potential energy in Fig. 4.18(b). At these pressures, where the plasma does not

have time to reach thermal quasi-equilibrium, inferring the plasma temperature

from the density profile is not a useful endeavor. As a result, the rapidly increas-

ing inferred temperatures for the B = 300 G expansion rate data in Fig. 4.9 are not

meaningful.



4.3. Temperature Evolution 130

0.0 0.2 0.4 0.6 0.8 1.0
Hold time (s)

0

1

2

3

4

T
⊥
 (

eV
) 

(p
ro

fi
le

)

Saturated image
Decreasing hold time, taken second

Increasing hold time, taken first

B = 600G
P ~ 2×10−6 Torr
Vs = 3350V
Vh = 4.8V
Vb = −16.6V

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Hold time (s)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

T
|| (

eV
) 

(O
T

D
A

)

Increasing hold time
Decreasing hold time

B = 600G
P = 2.1×10−6 Torr
Vs = 3350V
Vh = 5.2V
Vb = −16.6V

(b)

Figure 4.18: The inferred perpendicular temperature evolution (a) and the mea-
sured r = 0 parallel temperature (b) at P ≈ 2 × 10−6 Torr. For this data, B = 600
G and NL . 3× 107 electrons/cm. The density profile data used to compute T⊥ in
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The finding that the small-filament plasmas are not in thermal quasi-equilibrium

until t ≈ 3 seconds in the evolutions also affects the understanding of other mea-

surements made of EDG plasmas. The plasma expansion rate in the asymmetry-

induced expansion regime was previously observed to be proportional to B−3/2

[CHAO et al., 2000], but since this was determined using plasmas trapped for less

than 1 second, this dependence is now interpreted to be characteristic of the plas-

mas’ relaxation to thermal quasi-equilibrium as a function of B. It should therefore

be compared to the estimated dependences in Eqs. 3.70

1

τE×Bn

∝
(
n

B

)2

ln

(
n3/2

B

b4mecv̄

e

(
λD
√
n
))

1

τ class
n

∝
(
n

B

)2

ln
(

1

B

mecv̄

eb

)
,

[determined from from the estimates for the characteristic density relaxation times

τE×Bn and τ class
n in Eqs. (3.21) and (3.24)] instead of theB−2 dependence in Eq. (3.46)

for thermal quasi-equilibrium plasmas. This comparison, though, is still not sat-

isfying because the estimates in Eqs. 3.70 do not appear to describe the suspected

density equilibration time in EDG (see section 4.2.4). The expansion rates used in

the preliminary B−2.2 dependence measured at higher pressures [MORRISON et al.,

2001], though, should not be overly affected by the relaxation process and still con-

stitute a fair result. In addition, the m = 1 diocotron mode evolutions discussed in

Chapter 5 and measured previously [CHAO et al., 2000; CHAO, 1999; CHAO et al.,

1999b] are often strongly influenced by the behavior of the mode in the first few

seconds of plasma evolution, sometimes because that is precisely the interesting

part of the evolution. The best way to overcome this difficulty would be to use an

applied, “rotating-wall”, electric-potential asymmetry [HOLLMANN et al., 2000a]

to better confine the plasma until it had time to fully equilibrate before releasing it
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to observe the ensuing dynamics, but this amount of investment was not available

for this thesis work. It is, of course, possible that the large-filament plasmas were

closer to thermal quasi-equilibrium at t = 0 and took less time to equilibrate than

the small-filament plasmas do, but the similar initial-phase expansion rates and

similar decrease in the expansion rate near the end of the evolutions suggest that

the equilibration takes a similar amount of time for both large- and small-filament

plasmas.

Lastly, it is reassuring to note that both of the the plasma evolutions observed

with the phosphor-screen diagnostic at P ≈ 2 × 10−6 Torr and P ≈ 5 × 10−8

Torr show that the later-phase plasma expansion changes noticeably after approx-

imately 2% of the total plasma charge has been lost. This is evident from the

measured and inferred temperature evolutions at P ≈ 2 × 10−6 Torr and from

a clear change in the mean-square-radius evolution at P ≈ 5 × 10−8 Torr (not

shown). These observations indicate that the expansion rates calculated for the

data recorded before 2% of the total charge was lost (in Figures 4.6, 4.9, 4.10, and

4.11) are more representative of unperturbed plasma expansion than the 5%-lost

rate calculations.

4.4 Summary of Plasma Expansion Studies

In this chapter, measurements of the plasma density profile and temperature

evolutions demonstrate that the plasma indeed expands linearly with pressure

when the effects of trap field asymmetries are negligible, in agreement with the
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prediction for uniform-temperature plasmas. This plasma expansion rate depen-

dence on pressure has been measured at B = 300 G and B ≈ 600 G for two differ-

ent initial plasma radii, and is not observed to be affected by interactions between

the plasma and the trap electrodes. High-resolution density profiles taken with

the new phosphor-screen density diagnostic in the asymmetry-induced expansion

regime suggest that this expansion rate data was taken during the plasma’s ini-

tial, nonlinear relaxation to thermal quasi-equilibrium. This suspicion was con-

firmed by the quick increase in the on-axis (r = 0) parallel temperature measured

with the new, on-axis temperature diagnostic amplifier. The improved density

and temperature diagnostics show that EDG plasmas take approximately 3 sec-

onds to reach a thermal quasi-equilibrium state when νen � νee, which is similar

to the observed behavior in other devices [DRISCOLL et al., 1988]. It is surprising

that these non-equilibrium plasmas expand at rates similar to the predicted rates

for uniform-temperature plasmas above P ≈ 4 × 10−7 Torr. This indicates that

any temperature gradients that exist have a relatively small effect on the plasma

expansion in EDG. The plasma expansion at low pressures is found to be almost

entirely due to the plasma’s relaxation to thermal quasi-equilibrium and the effects

of trap asymmetries. Finally, the new, late-time expansion rates measured with the

phosphor screen density diagnostic appear largely insensitive to the background

gas pressure below P ≈ 1× 10−8 Torr.

The measured plasma temperature evolutions also indicate that the plasma

temperature is not increasing during the newly identified asymmetry-induced ex-

pansion, so the liberated electrostatic potential energy leaves the plasma through

some undetermined mechanism. The electrostatic potential energy is estimated

from the axially integrated density profiles, and clearly changes by more than 1
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eV/electron during the P ≈ 6 × 10−9 Torr expansion. The non-increasing plasma

temperatures suggest the possibility that the expected temperature gradients at

HV gas pressures are suppressed in our plasmas by the energy loss mechanism,

possibly explaining the agreement between our measured expansion rates and the

theoretically predicted rates. It was illustrated previously [CHAO, 1999] that even

a small number of gas molecules that experience strongly inelastic collisions with

∼ 1 eV electrons could explain the drop in plasma energy, and this remains the

most likely explanation for the lack of energy balance. Since the measured temper-

atures also disagree with the temperatures inferred from the density profiles, it is

concluded that inferring the effective, thermal quasi-equilibrium plasma tempera-

ture when the plasmas are not fully in thermal quasi-equilibrium does not produce

a representative measure of the plasma thermal energy.



Chapter 5

Measurements of m = 1 Diocotron

Mode Evolution

The m = 1 diocotron mode, an electrostatic surface wave with kz ≈ 0 (and de-

scribed in section 3.4), is the most easily observed and controlled wave in Malmberg-

Penning trap plasmas. Because EDG plasma expansion is not observed to be par-

ticularly sensitive to background gas pressure for P . 10−8 Torr (see chapter 4),

measurements were made of the m = 1 diocotron mode evolution to see if it was

more dependent on the pressure [CHAO et al., 2000; CHAO, 1999; CHAO et al.,

1999b]. This previous work showed that the diocotron mode evolution is indeed

sensitive to pressure in the UHV regime, but the dependence was not readily ex-

plained by any existing theoretical model. Subsequent measurements described in

this thesis have revealed that the m = 1 mode evolution is also very sensitive to

other trap parameters, such as the choice of filament heating voltage. It is again

clear that careful characterization of the trap conditions must be performed in or-

der to use the evolution of this wave as a UHV pressure standard.

135
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In this chapter, the comparisons made in the previous work [CHAO, 1999] be-

tween the m = 1 diocotron mode characteristics in EDG and in other similar plas-

mas are reviewed in section 5.1. Next, the newly observed sensitivity of the mode

evolution to the electron source voltages is described in section 5.2. Finally, new

measurements of the mode growth rate versus pressure are presented in section

5.3, and measurements of the transiting ions that are suspected to cause this desta-

bilization (see section 3.4.2) are discussed in section 5.4.

5.1 Review of Basic Comparisons with Theory

In the previous study of the m = 1 diocotron mode evolution in EDG plasmas,

care was taken to ensure that the observed modes agreed in all measurable ways

with the m = 1 modes in other experiments and with the theoretical descriptions.

In particular, the mode frequency and the mode’s strong growth in the presence of

resistive trap electrodes were observed, and these measurements are summarized

here.

5.1.1 Agreement with Predicted Finite-Length Frequency

Section 3.4.1 describes the ways that the measured m = 1 diocotron mode fre-

quency in a finite-length, Malmberg-Penning trap plasma should differ from the

m = 1 diocotron mode frequency ωD predicted for small-amplitude modes on an

infinite-length electron column [LEVY, 1968]. Figure 5.1 [CHAO, 1999] shows a

comparison between the measured frequencies and the corresponding, predicted,

finite-length frequencies for EDG data using Eqs. (3.58) and (3.60) from section

3.4.1. It is clear that the measured EDG frequencies (the circles) are higher than the
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Figure 5.1: Plot of measured m = 1 diocotron mode frequencies and predicted
finite-length mode frequencies versus the infinite-length m = 1 mode frequency.
The mode frequency was adjusted by varying the plasma line density in the range
2 × 107 electrons/cm ≤ NL ≤ 6 × 107 electrons/cm and the magnetic field in the
range 92 G ≤ B ≤ 614 G. The circles represent the measured frequencies, the
solid line represents the infinite-length-plasma mode frequency, the upright, solid
triangles are the values produced using Eq. (3.60) [PRASAD and O’NEIL, 1983], and
the inverted triangles are those predicted using Eq. (3.58) [FINE and DRISCOLL,
1998]. (Reproduced from [CHAO, 1999], with permission.)
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infinite-length diocotron mode frequency (the solid line), and appear consistent

with both sets of finite-length frequency predictions (the triangles). The scatter in

both the frequency data and the predicted values is too great to confirm the finding

in other experiments [FINE and DRISCOLL, 1998] that the frequency prediction in

Eq. (3.58) (that considers the plasma to be in a dynamic equilibrium) is the better

one, however. The plasma radius Rp used in the finite-length frequency predic-

tions for EDG was estimated from the density profile data to beRp ≈
√

2 〈r2〉, while

the plasma radius used for the study confirming Eq. (3.58) [FINE and DRISCOLL,

1998] was defined as the radial point where the density dropped to half of its r = 0

value [n(Rp) = n(r = 0)/2]. However, these two calculations should not differ

markedly.

The additional, (∆f/f0) ∝ (D/Rw)2 frequency shift in Eq. (3.61) for large-

amplitude (D/Rw . 1) modes was also observed [CHAO, 1999] by exciting the

mode to large amplitudes with a resistive trap electrode (see section 5.1.2). These

measurements give us confidence that we are properly measuring the plasma fre-

quency and mode amplitude (the plasma “displacement” off the trap axis).

5.1.2 Resistive-Wall Mode Growth

Appreciable electrical resistance between points on a trap electrode’s surface

and the point of zero potential (“ground”) can have a strong effect on the growth

rate of the m = 1 diocotron mode [WHITE et al., 1982], as described in section

3.4.2. The dependence of the diocotron mode growth rate on an applied resis-

tance between an azimuthally discontinuous trap electrode and the point of zero

potential was previously measured in EDG [CHAO et al., 2000; CHAO, 1999], and

the results are presented in Fig. 5.2. The solid line in Fig. 5.2 is the theoretical
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Figure 5.2: Plot of the diocotron mode growth rate vs. electrode resistance to
ground. For this data, B = 610 G and ωD/2π ≈ 38.0 kHz, which corresponds to
NL ≈ 3.3× 107 electrons/cm. (Reproduced from [CHAO, 1999], with permission.)

prediction in Eq. (3.68), and exhibits the characteristic shape given by the factor

γR ∝ Real{Z} = R/(1 + (ωDRC)2). The impedance Z between the electrode and

the point of zero potential is a combination of the inherent C = 200 pF capacitance

to ground of the the trap electrode (either electrode 3 or 4), the inherent cable ca-

pacitance, and a metal-oxide resistor in parallel. The data agree rather well with

the predicted growth rates and the prior experimental data up to a resistance of

R ≈ 106 Ω, but the growth rates measured above R ≈ 106 Ω are unexpectedly

large. The source of the discrepancy at high resistances has not been determined

[JENKINS et al., 2002] and could represent some novel plasma effect, though non-

ideal behavior by the applied resistors or the measurement amplifiers has not been

completely ruled out.

With the phosphor screen diagnostic, this exponential growth can be confirmed

by determining the plasma displacement from successive plasma images and fit-

ting the evolution with an exponentially increasing curve. This procedure has been
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Figure 5.3: Image-derived diocotron mode amplitude vs. time using three different
resistors. For this data, Vb = −17.34 V, Vh = 4.1 V, B = 600 G, P . 1 × 10−9 Torr,
and NL ≈ 3.5 × 107 electrons/cm. This data was taken before the magnetic field
alignment was improved with the Helmholtz coils. Note that the error bars are
smaller than the plot symbols in all cases.

performed for small-filament plasmas, and the results are displayed in Fig. 5.3. The

growth rates estimated from the image-computed displacements agree well with

the theoretically predicted values plotted in Fig. 5.2. The evolution of the plasmas’

root-mean-square radius can also be calculated from the image data, and is shown

in Fig. 5.4. The root-mean-square radius data shows that the plasma does not ex-

pand decidedly faster at low pressures when a quickly growing m = 1 diocotron

mode is present than when it is not. Points for which the plasma was obviously

distorted by proximity to and possible contact with the trap electrodes have been

omitted from Figures 5.3 and 5.4.
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Figure 5.4: Plasma root-mean-square radius evolutions for the data in Fig. 5.3.
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error bars apply.
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Strong mode growth is produced so reliably in the presence of a resistive trap

electrode that researchers sometimes introduce a resistor momentarily (using a re-

lay) to produce large initial diocotron mode amplitudes. The subsequent evolution

of the mode is observed once the resistor is again eliminated from the circuit. Any

amplitude dependence of the mode growth has not been adequately investigated

in EDG, however.

5.1.3 “Anomalous” Mode Damping

One unexpected observation made during the characterization of the diocotron

mode behavior in EDG was of an underlying exponential damping [D ∝ exp(γanomt),

where γanom < 0] with a growth rate γanom varying roughly as (NL/B)2. The data

demonstrating this behavior is presented in Fig. 5.5. These measured growth rates

were compared to the predicted growth rates for rotational pumping [Eq. (3.65)]

and for coupling between the m = 1 diocotron mode and Landau-damped, kz 6= 0

plasma modes [Eq. (3.71)]. It was noted that rotational pumping is independent of

the magnetic field B, and the mode-coupling theory (which does have an approx-

imately γmc ∝ ω2
∞ dependence) predicts growth rates that are an order of mag-

nitude too large (and negative). The “anomalous” damping’s scaling is similar

to that of some types of asymmetry-induced plasma expansion and the density

profile relaxation timescales in Eq. (3.70). It has therefore been hypothesized that

plasma expansion is involved in the mode damping, as it is in rotational pump-

ing. No clear relationship other than the rotational pumping mechanism has been

made between mode damping and plasma expansion in the literature, however.

With an appropriate selection of plasma parameters (particularly, B ∼ 600 G),

the effects of this ”anomalous” damping are minimized in EDG.
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Figure 5.5: Plot of the diocotron mode growth rate vs. frequency. The diocotron
mode frequency was adjusted by varying the line density in the range 1.9 × 107

electrons/cm ≤ NL ≤ 6× 107 electrons/cm and the magnetic field in the range 160
G ≤ B ≤ 620 G. This data was taken at a base pressure of P ≈ 3 × 10−9 Torr, a
heating voltage of Vh = 8 V, and bias voltages Vb = −7.9 V, −11 V, −14.2 V, and
−17.4 V. Note that the mode grows at the lowest values of NL/B [ωD/(2π) < 50
kHz]. There is no measured change in the total plasma charge during this damp-
ing. (Reproduced from [CHAO, 1999], with permission.)
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5.2 Mode Sensitivity to Filament Conditions

With the knowledge that resistive-trap-electrode growth and anomalous damp-

ing can affect the m = 1 diocotron mode dynamics, further measurements have

been made of the evolution that indicate additional influences on the mode. The

m = 1 diocotron mode evolution in EDG is observed in this thesis research to be

unexpectedly sensitive to the conditions in the electron source. In this section, the

mode growth rate as a function of the filament heating voltage Vh and filament

bias voltage Vb for small-filament plasmas is presented, and the choices of these

seemingly unimportant trap parameters are seen to strongly influence the mode

dynamics.

5.2.1 Influence of Filament Heating Voltage

For plasma conditions where the “anomalous” damping measured previously

should be small, the mode is observed to grow at increased filament heating volt-

ages. Figure 5.6 shows the increase in the diocotron mode growth rate with in-

creasing heating voltage Vh. The range of the growth rates observed here is just

as large as the range of growth rates measured previously for the “anomalous”

damping, except with a constant magnetic field and a slowly varying total plasma

charge. In fact, none of the plasma parameters calculated using the density diag-

nostics [N , max(dn/dr), 〈r2〉(t = 0)] vary greatly with the heating voltage in this

range. In the plot, the data represented by the diamonds, circles, and triangles was

taken after the filament assembly and trap had become heated by the filament and

the pressure had risen to readings of 1.5 × 10−10 Torr < P < 1 × 10−9 Torr, while

the squares represent the data taken first, at around P ∼ 1.5× 10−10 Torr.
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Figure 5.6: Diocotron mode growth rate vs. filament heating voltage at Vb = −16.7
V, ωD/(2π) ≈ 48 kHz (corresponding toNL ≈ 4×107 electrons/cm), andB = 600 G.
The median growth rate is calculated by taking the median value of the diocotron
mode growth rate between the point where the voltage signal from the diocotron
mode amplifier rises above A = 0.02 V and the point where its slope dA/dt is
a maximum. The high and low values of the growth rate in this subset of the
evolution are indicated with “error bars” for a few points, but the uncertainty in
the median growth rate is clearly much smaller because of the small spread of the
data represented by diamonds, triangles, and circles. The fact that the high value
is generally much further away from the median than the low value indicates that
most of the difference is due to the changing growth rate rather than to noise. Black
dots are additionally plotted inside the symbols to which the high and low value
bars apply.
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Figure 5.7: Plot of the median diocotron mode growth rate γ vs. heating voltage Vh
for several values of bias voltage Vb. The median growth rate is computed in the
same manner as for the data in Fig. 5.6, but the “error bars” plotted here represent
the standard deviation of the points between A = 0.02 V and the point where
dA/dt is a maximum. The standard deviation is shown instead because the high
and low values for some of the data are excessively affected by noise. For this data,
B = 600 G. (A different analysis of this data was presented previously in [PAUL
et al., 2003].)

Similar behavior is observed at several different values of filament bias voltage,

as demonstrated in Fig. 5.7. Again, the Vb = −7.87 V and Vb = −16.6 V data that are

below the Vb = −31.57 V data were taken at slightly lower pressures than the rest

of the data at these two bias voltages. The difference between the growth rates at

lower and higher pressures was thought to be an undetermined mechanical (sur-

face chemistry) requirement that the filament warm up fully, but is now thought to

have been an early sign of the pressure dependence of this mode growth (see sec-

tion 5.3.2). The Vb = −31.57 V data in this plot show that the mode can also grow
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Figure 5.8: Plot of the measured parallel temperature T|| vs. filament heating
voltage Vh. For this data, the plasmas were held in the trap for t = 3 seconds,
Vb = −16.6 V, and B = 600 G.

strongly at heating voltages below Vh = 5.5 V. For this part of the data, the mode

frequency decreases as the heating voltage is decreased, implying that the plasma

line density is also decreasing. An explicit line-density dependence of the growth

rate has not been measured for this thesis work, but the “anomalous” damping

data (Fig. 5.5) suggests that the mode would be less damped at lower line density.

Since the mode growth rate generally increases with heating voltage, it is con-

ceivable that the electrons emitted at the higher heating voltages are imparted ad-

ditional kinetic energy that somehow affects the mode growth rate. To test this, the

parallel temperature as a function of Vh was measured after the plasma had time

to equilibrate (t = 3 seconds). As shown in Fig. 5.8, it does not vary in the inter-

esting range 5 V < Vh < 7 V to within the sensitivity of the diagnostic. Each of the
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data points in Fig. 5.8 is from an individual plasma, with the data represented by

the triangles taken first. In the absence of additional information, it was originally

conjectured that the dependence of the growth rate on the heating voltage could

therefore only be due to some subtle details of the density and temperature pro-

files that are not obviously correlated to the mode growth but somehow critical to

the evolution. Instead, it is now hypothesized that all the measured mode growth

at high heating voltages (Vh > 5.5 V) is due to transiting ions passing through the

plasma axially and destabilizing the mode. This phenomenon is described in sec-

tion 3.4.2, and measurements of ions produced by the EDG filament assembly are

presented in section 5.4.

This dependence of them = 1 mode growth on heating voltage is thought to ex-

plain the discrepancy between the measured and predicted plasma expansion rates

around P ≈ 1 × 10−5 Torr in Fig. 4.10. The m = 1 mode is observed to grow quite

strongly at Vh = 6.8 V, which is the heating voltage used for the highest pressure

data in Fig. 4.10. Also taking into account the mode growth’s pressure dependence

(see section 5.3.2), it is possible that the mode grew very quickly, causing the plas-

mas to interact almost immediately with the trap electrodes. This behavior could

have been misinterpreted as slower plasma expansion because of the limitations

of the Faraday-cup density diagnostic.

5.2.2 Influence of Filament Bias Voltage

Changes in the filament bias voltage were also shown to affect the growth rate

of the m = 1 diocotron mode at sufficiently high heating voltages, as illustrated in

Fig. 5.9. This data shows that the mode growth rate slowly increases with increas-
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Figure 5.9: Plot of the median diocotron mode growth rate vs. bias voltage. For
this data, Vh = 6 V, B = 600 G, and the mode frequency varies in the range 17.5
kHz. ωD/2π . 79 kHz (corresponding to 1.5×107 electrons/cm. NL . 6.7×107

electrons/cm). The data was calculated in a manner similar to that for the data
in Fig. 5.6, but the median damping rates for points where γ . 0 were calculated
either using the mode evolution from the point where the signal amplitude A was
a maximum to the point where the signal amplitude dropped to A = 0.02 V, or all
the data above A = 0.02 V if the presence of growth or damping couldn’t clearly
be identified. The “error bars” plotted correspond to the high and low growth rate
values in the chosen subset of the evolution.
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ing bias voltage at low bias voltages (Vb & −2Vh = −12 V) and sufficient back-

ground gas pressures (specifically, the data denoted by the triangles and squares),

and that the growth rate increases with decreasing bias voltage at high bias voltages

(Vb . −5Vh = −30 V). Similar behavior is observed for data taken at different heat-

ing voltages. For Figure 5.9, the filament heating voltage was set to a point where

the heating voltage dependence showed clear diocotron mode growth (Vh = 6 V).

Not surprisingly, the data represented by the diamonds was taken at the lowest

pressures in the data set, while the data represented by the triangles and squares

was taken after the pressure had risen to readings above P ≈ 3.1× 10−10 Torr. The

data represented by the triangles was taken at a higher pressures than the data

represented by the squares, so the data for Vb . −30 V suggests that increased

pressure causes greater mode growth in this bias voltage range as well.

The dependence of the growth rate on filament bias voltage is not as surprising

as the heating voltage dependence in section 5.2.1, because the plasma total charge

N increases dramatically as Vb becomes more negative (from N ≈ 1 × 108 elec-

trons to N > 4.5 × 109 electrons in this data set) and the measured initial plasma

radius increases from Rp ≈ 0.31 cm to Rp ≈ 0.78 cm. Even the changes in “anoma-

lous” damping with NL could be responsible for the decrease in growth rate with

increasing total charge at low bias voltages (Vb & −12 V). Additional data at ex-

tremely low bias voltages (Vb > −4.5 V) in Fig. 5.13 show that the growth rate

eventually stops increasing with increasing bias voltage, presumably because the

trapped electrons are too tenuous to support the mode and may only dubiously be

called a plasma.

The high growth rates at the highest bias voltages (Vb . −30 V) occur for plas-

mas formed with |Vb/Vh| > 4, which is also true of the Vb = −31.57 V heating
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voltage scan data in Fig. 5.7 (especially below Vh = 5.5 V). At the highest bias

voltages in the bias voltage scan, the mode frequency is also observed to decrease

as the ratio |Vb/Vh| increases, but accompanying data taken with the total collec-

tor of the Faraday-cup density diagnostic indicates that the total charge increases

linearly with decreasing bias voltage. Decreased line density is, therefore, neither

suspected to be present nor to be responsible for the mode growth in either situa-

tion. The decreasing mode frequency is not explained at present.

The damping seen at some bias voltages in Fig. 5.9 always occurs immedi-

ately after the plasma is trapped, and it is possible that the initial expansion of

the plasma as it relaxes to thermal quasi-equilibrium is somehow related. If so, a

mode excited using the resistive-wall technique (see section 5.1.2) after the plasma

is in thermal quasi-equilibrium might damp away at a different rate. For the ma-

jority of the growth rate data presented in this thesis, the modes either grow so

strongly in the first second of plasma evolution or grow so continuously for sev-

eral seconds that the initial relaxation of the plasma density profile is not expected

to change the nature of the results markedly.

5.3 Mode Sensitivity to Pressure

Having identified a new regime of m = 1 diocotron mode behavior in EDG

(see section 5.2), it is interesting to see if the dependence of the mode evolution

on background gas pressure is different in that regime than that observed pre-

viously [CHAO et al., 2000]. Specifically, a comparing the two could help reveal

the mechanisms important for producing both behaviors. This section describes

the former measurement of diocotron mode damping with increased background
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gas pressure and new measurements of the pressure dependence of the filament-

voltage-dependent growth.

5.3.1 Previous Measurements of the Mode Evolution Pressure De-

pendence

With the resistive-electrode and anomalous (NL/B)2 damping effects adjusted

to produce slight damping at the base pressure, the mode was previously seen

[CHAO et al., 2000; CHAO, 1999] to damp more strongly as the background gas

pressure was increased, as shown in Fig. 5.10. Pressure differences as small as

∆P ≈ 5 × 10−10 Torr produced measurable differences in the mode amplitude

evolution that took roughly 8 seconds to discriminate. The sensitivity to back-

ground gas pressure is much better than for the expansion rate measurements in

part because a measurement of the mode evolution can be made with just one

plasma, while an expansion rate measurement with the Faraday-cup density diag-

nostic required the trapping of hundreds of plasmas. The non-exponential damp-

ing with pressure was slow enough that the plasma could have expanded to a

point where it had some contact with the trap electrodes, though the seemingly

constant plasma frequencies (to within 1% throughout the evolution) suggest that

only a small amount of charge could have been lost.

5.3.2 Measurements of the Mode Growth Rate Dependence on

Pressure

Duplicating the particular trap conditions that created the pressure sensitivity

observed previously (Fig. 5.10, [CHAO et al., 2000]) with the new small-filament
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Figure 5.10: Amplitude evolution of the m = 1 diocotron mode. Each individual
evolution is normalized by its value at t = 0 seconds. For this data, B = 612 G and
ωD/2π = 55 kHz (corresponding to NL ≈ 4.6 × 107 electrons/cm). Note that the
pressure readings reported in this figure are the N2-equivalent pressures reported
by the Bayard-Alpert ionization gauges, and the smallest pressure difference mea-
sured is in fact ∆P ≈ 5× 10−10 Torr because the gauges are roughly five times less
sensitive to helium gas than they are to nitrogen gas. (Reproduced from [CHAO,
1999], with permission.)
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plasmas and a better-aligned magnetic field proved to be difficult, so an investiga-

tion was made into whether more controllable effects on the mode evolution were

sensitive to gas pressure. The damping of modes in the presence of a slightly re-

sistive trap electrode or modes initially excited to a large amplitude seemed to be

rather insensitive to pressure [PAUL et al., 2002] below P ∼ 10 × 10−8 Torr. How-

ever, small discrepancies in that mode damping data suggested that the choice of

filament voltages had an effect on the mode evolution, provoking the measure-

ments described in section 5.2. With the observation that the mode was partic-

ularly sensitive to the filament conditions, a new opportunity for identifying a

pressure-sensitive phenomenon presented itself.

The growth rate of the diocotron mode was first measured as a function of

pressure at Vh = 6 V by simply allowing the filament to heat the device and drive

off gases adsorbed to the trap surfaces. The results of this measurement are pre-

sented in Fig. 5.11. The constitution of this mixture of gases is unfortunately not

known, but its effects are interesting, nonetheless, because the unknown, desorbed

gases are almost certainly present even when helium gas is used to change the

pressure for other data sets (increases in the helium partial pressure shouldn’t

appreciably affect the ability of the filament to heat the trap). In contrast to the

increased damping at increased pressures observed previously, the mode growth

rate measured here increases with increasing background gas pressure. This de-

pendence is consistent with the differences in the filament-heating-voltage and

bias-voltage growth rate data (in Figures 5.6 and 5.8) between the points taken

before and after the pressure increased. Even the magnitude of the growth rate

changes with pressure in Fig. 5.11 are consistent with those previous discrepan-

cies. For the data in Fig. 5.11, differences in mode growth are evident for changes
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Figure 5.11: Growth rate vs. pressure at Vb = −16.7 V, Vh = 6 V, B = 600 G, and
ωD/2π ≈ 47 kHz (corresponding to NL ≈ 4 × 107 electrons/cm). The median
growth rate (large diamonds) is again calculated by taking the median value of the
mode growth rate between the point where the voltage signal from the diocotron
mode amplifier rises above A = 0.02 V and the point where its slope dA/dt is a
maximum. The average growth rate (small diamonds) is the average value of the
mode growth rate in this subset of the evolution. The high and low values of the
growth rate are indicated by the “error bars” on the selected median growth rate
data, and the standard deviation of the growth rate is indicated on the correspond-
ing average growth rate points. The average growth rate points are shifted to a
slightly higher pressure from the computed pressure for clarity, as can be clearly
perceived from the points with “error bars”. The solid line is 3 × 104 times the
theoretical growth rate γn for mode growth due to electron-neutral collisions.
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in pressure as small as ∆P ≈ 1 × 10−10 Torr, which is an improvement over the

previous mode damping measurements. Not much change is seen in the growth

rate past P ∼ 1× 10−9 Torr, though, and it is possible that the mechanism produc-

ing the mode growth is saturated beyond this point. The theoretical growth rate

γn = ω∞(νen/ωce) [∝ P ] [Eq. (3.69)] for mode growth due to electron-neutral colli-

sions is completely negligible compared to this pressure-dependent mode growth

and the filament-voltage-dependent mode growth in section 5.2; the solid line plot-

ted in Fig. 5.11 is 3 × 104 times the theoretical growth rate γn. Again, the plasma

expansion is too fast for the prediction of collisionally induced mode growth to be

applicable (see section 3.4.2).

Figure 5.12 shows a similar data set [PAUL et al., 2003] where Vb = −4.7 V. In

this data set, however, helium gas was used to adjust the pressure above P = 2 ×

10−10 Torr, and the growth rates did not increase once helium was added; only the

initial pressure changes due to the heating of the trap had a noticeable effect on the

growth rate. This behavior might also ultimately be explained by the reason for the

“saturation” of the growth rate data in Fig. 5.11, but another possible explanation

for this behavior is discussed in section 5.4. The solid line again indicates how

small the collisionally induced mode growth is for these plasmas.

For a clearer picture of how the growth rate sensitivity to pressure depends

on filament bias voltage, growth rate data as a function of bias voltage was taken

quickly at several background gas pressures below P = 1×10−8 Torr, and this data

is displayed in Fig. 5.13 [PAUL et al., 2003]. This data shows that the median growth

rate increases with increasing background gas pressure for bias voltages in the

range−10 V< Vb < −3.5 V. Mode growth is also seen for bias voltages in the range

−18 V< Vb < −11 V (which includes the Vb = −16.6 V value used for Fig. 5.11), but
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Figure 5.12: Median and average diocotron mode growth rate vs. pressure, where
helium gas was used above P = 2×10−10 Torr. For this data, Vb = −4.7 V, Vh = 6 V,
and ωD/2π ≈ 13.7 kHz (corresponding to NL ≈ 1.2 × 107 electrons/cm). The me-
dian and average diocotron mode growth rates are computed in the same manner
as for the data in Fig. 5.11, but only the standard deviations of the growth rate evo-
lution are displayed because the data was too noisy to have meaningful high and
low growth rate values. The solid line shows that these growth rates are roughly
a factor of 1.5 × 106 greater than the growth rates predicted for electron-neutral-
collision-induced mode growth γn [Eq. (3.69)]. (A different analysis of this data
was presented previously in [PAUL et al., 2003].)
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Figure 5.13: Diocotron mode growth rate vs. Vb at several background gas pres-
sures. For this data, Vh = 6 V, B = 600 G, and 12 kHz . ωD/2π . 47.3 kHz
(corresponding to 1 × 107 electrons/cm . NL . 4.0 × 107 electrons/cm). The me-
dian diocotron mode growth rate is computed in the same manner as for the data
in Fig. 5.9, and the “error bars” show the standard deviation of the growth rate
evolution for the P ∼ 1.5× 10−9 Torr data. The points where γ = 0 indicate that no
growth rate could be computed for the evolutions under those conditions, usually
meaning that the maximum signal amplitude was below the chosen noise level
A = 0.02 V.
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not enough data is available to illustrate the pressure dependence there. For this

plot, helium gas was used to help adjust the pressure. One interesting discrepancy

between the data in Fig. 5.13 and the earlier bias-voltage data in Fig. 5.9 is that the

newer data show no diocotron mode growth in the range −10 V . Vb . −11 V,

even at pressures similar to those for Fig. 5.9. Recent mode growth data suggest

that asymmetries in the confining fields affect the mode growth, and the improved

field alignment used for the data in Fig. 5.9 may ultimately explain the appearance

of this feature.

The data in this section (section 5.3.2) show a higher sensitivity to the back-

ground gas pressure in EDG than seen in the previous diocotron mode evolution

data, with changes in pressure as small as ∆P ≈ 3×10−11 Torr (N2-equivalent) ob-

served in Fig. 5.12. The pressure dependence for desorbed gas shown in Fig. 5.11

also suggests that the slight growth seen at low NL/B in the “anomalous” damp-

ing is caused by the same mechanism (and is not part of the remaining (NL/B)2

dependence in Fig. 5.5), since the base pressure for that data was a reading of

P ≈ 3× 10−9 Torr.

5.4 Transiting Ion Measurements

To determine whether previously undetected ions passing axially through the

electron plasma are causing the mode growth at increased heating voltages (shown

in sections 5.2 and 5.3.2), as described in section 3.4.2, the ion current emitted by the

filament assembly as a function of background gas pressure is measured. This was

accomplished by charging consecutive trap electrodes (e.g., electrodes 1–6) to a

confining voltage (−150V) to repel any electrons produced, charging trap electrode
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Figure 5.14: Ion current vs. background gas pressure for a variety of background
gases. For this data, B = 600 G, Vh = 7 V, and Vb = 0.033 V. The uncertainty in
the current is smaller than the plot symbol for all data points. The filament bias
voltage was set to Vb & 0 because preliminary data suggested the ion emission was
substantial at this setting.

7 (to which the copper acceleration grid for the phosphor screen is attached) to−5.6

V, and charging the phosphor screen to−5.3 V using a separate power supply. The

current to the phosphor screen is measured using a Keithley 602A Electrometer in

series with the phosphor screen’s power supply.

The ion currents measured as a function of background gas pressure with this

setup are shown in Fig. 5.14. In this plot, the pressure reported for the desorbed

gas data is simply the pressure reading from the gauge (which is set to report the

pressure for pure nitrogen gas), because we do not know the relative sensitivity

of the gauge to the desorbed gas. The pressure for the helium data is corrected

for the factor of five lower gauge sensitivity to helium than to nitrogen. The first
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data set taken (the circles) is the current as a function of the desorbed gas pressure

(created by letting the filament heat the trap, just as for Fig. 5.11). It took several

hours for the pressure to rise to an extractor gauge reading of P = 1.4× 10−8 Torr.

The next data set, represented by the diamonds, was obtained by leaking helium

gas into the trap. However, the six diamonds in this set that are distinct from the

rest in the range of pressure readings 2× 10−8 Torr < P < 7× 10−8 Torr were taken

immediately after the flow of helium gas to the trap was stopped at the reading

P ≈ 4× 10−7, and should have been less than the ion current at that pressure.

This unusual behavior suggests that the ion current measured at the phosphor

screen for Vb > 0 is not a function of the helium gas pressure but rather of some in-

dependent quantity, such as the partial pressure of the gas desorbed from the trap

surfaces. This hypothesis was tested by instead leaking nitrogen gas into the trap,

since nitrogen should be much more easily ionized than helium gas (the ionization

gauges are 5 times more sensitive to nitrogen than helium, and are only 1.5 times

more sensitive to argon than nitrogen). The nitrogen-gas data is represented by

the squares in Fig. 5.14, and exhibits a similar behavior to the data obtained using

helium; the ion current rises slowly for the entire time that nitrogen is leaked into

the trap, and then continues to rise after the nitrogen leak is turned off (as demon-

strated by the four squares above the helium data at a reading of P ≈ 2 × 10−10

Torr). If the diocotron mode growth measured for the high-heating-voltage data

is indeed due to the presence of transiting ions produced from the desorbed gas,

it could explain why the mode growth rates stopped increasing in Fig. 5.12 after

helium gas was introduced for pressure control—the quick changes in the partial

pressure of helium would have little effect on the slow increases in the diocotron
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Figure 5.15: Ion current vs. confining voltage at a pressure reading of P ≈ 5.5×10−9

Torr (of desorbed gas), Vb = 0.033, Vh = 7 V, and B = 600 G. The uncertainty in the
current is smaller than the plot symbol for all data points.

mode growth rate, and the mode growth would appear to have saturated as the

background gas pressure was increased with helium instead.

During the measurement of the ion current represented by the circles in Fig. 5.14,

a quick set of measurements of the ion current as a function of the confining volt-

age on trap electrodes 1–6 revealed the dependence shown in Fig. 5.15. The current

from the filament assembly is observed to increase with increasing confining volt-

age, suggesting that the confining electrode voltages are not important for extract-

ing ions from the filament assembly at Vb ≈ 0 V. This data also supports the hy-

pothesis that transiting ions become trapped in the confining potential well formed

by the charged electrodes 1–6, and that more ions are trapped and allowed to es-

cape the trap radially to the confining electrodes [Kabantsev, 2003] as the confining
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voltage is made more negative. This axial trapping and radial diffusion of ions pro-

vides another avenue of escape for the ions (in addition to the two grounded grids

in EDG) when the phosphor screen is biased positively for plasma measurements.

At a reduced confining voltage, the greater ion current allows measurements

of the ion current dependences on the filament bias and heating voltages, shown

in Fig. 5.16. In addition, the confining voltage Vc may be applied to fewer trap

electrodes to further reduce the number of ions trapped and lost radially, and only

electrodes 1 and 7 were biased to their respective voltages for this data. In Figure

5.16(a), the current emitted by the filament assembly is displayed as a function of

the filament heating voltage for Vc = −14.7 V, and a similar increase with heating

voltage is observed as for the mode growth rate data in Figures 5.6 and 5.7. In

Fig. 5.16(b), the ion current as a function of bias voltage measured at the lower

confining voltage (Vc = −43 V, represented by the diamonds) has a similar depen-

dence on bias voltage to the mode growth rate data for Vb & −12 V in Figures 5.9

and 5.13, and the current measured at the higher confining voltage (Vc = −150 V,

represented by the triangles) also mimics the behavior of the mode growth data at

high bias voltages (Vb . −30 V).

The substantial ion current at the high bias voltages agrees with the most recent

transiting ion mechanism description [KABANTSEV and DRISCOLL, 2003b], which

postulates that ions are produced when electrons from the filament are accelerated

towards the zero-voltage accelerating grid between the filament and the trap and

ionize background gas molecules near the grid. This mechanism should not be

responsible for the majority of ion current measurements presented in this section,

those where Vb > 0 V, and an explanation for the source of ions at low bias voltages

(Vb > −25 V) is still outstanding. The observations in Fig. 5.14 that suggest only
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Figure 5.16: Ion current filament voltages. The uncertainty in the current is smaller
than the plot symbol for all data points without error bars. For the data in
Fig. 5.16(a), B = 600 G, Vb = 0.033 V, P ≈ 4× 10−10 Torr, and the confining voltage
Vc = −14.6 V. For the data in Fig. 5.16(b), B = 600 G, Vh = 7 V, and P ≈ 6 × 10−10

Torr.
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desorbed gas is ionized were also taken at Vb = 0.033 V, and this may be an im-

portant clue for the identification of the mechanism. However, this desorbed-gas

pressure dependence does not necessarily apply to mode growth and ion produc-

tion at high bias voltages (Vb < −30 V ), which might depend more sensitively

on inserted helium or nitrogen gas because of the different ion production mecha-

nism. The similitude between the ion current dependences and the mode growth

rate dependences on filament voltages strongly suggests that undesired ions are

responsible for the new mode growth at high filament heating voltages observed

in EDG.

One additional difference between the description of transiting-ion-induced

mode growth and the experiments presented here is that the transiting ions ob-

served in the UCSD experiment were apparently trapped between the positively

charged density diagnostic and the filament assembly. This was demonstrated by

the observation of an immediate decrease of the mode growth rate when the den-

sity diagnostic was switched to a negative bias voltage [KABANTSEV and DRISCOLL,

2003b]. In test experiments on EDG, switching the phosphor screen voltage from

Vs = +30 V to Vs = −30 V (between plasmas) had no effect on the growth rate

of the diocotron mode, even though the number of ions collected by the screen is

substantially less at Vs = +30 V (data not shown). If transiting ions are indeed the

cause of the mode growth in EDG, they must only travel through the plasma a few

times before they are lost to one of the zero-voltage grids (between the trap and

the filament assembly or between the trap and the phosphor screen) or become

deeply trapped in one of the confining potential wells for this test measurement to

be consistent. In addition, there could be some complicated interaction between
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the ions trapped in the confining potential wells and the plasma that accounts for

the mode growth, but this possibility has not been explored.

5.5 Summary ofm = 1 Diocotron Mode Measurements

The m = 1 diocotron mode in EDG was previously shown to have finite-length

and large-amplitude frequency shifts similar to those seen in other Malmberg-

Penning traps, and confirmed to grow in the presence of resistive trap electrodes.

The plasma’s displacement from the trap axis by the m = 1 mode has been ver-

ified using the new phosphor-screen diagnostic, and the presence of quick mode

growth does not cause the plasma to expand measurably faster than it does when

the mode is absent. The m = 1 mode was additionally observed in the previous

study to experience an “anomalous” damping that could not be explained by the

accepted “rotational pumping” mechanism, and the mode evolution was observed

to be sensitive to ∆P ≈ 5× 10−10 Torr changes in background gas pressure.

Subsequent measurements with small-filament plasmas presented in this chap-

ter reveal that the m = 1 mode in the UHV pressure range where the plasma ex-

pansion is slowly varying is also quite sensitive to the electron-source filament’s

heating voltage, the filament’s bias voltage, and the desorbed background gas par-

tial pressure. The mode is observed to grow more strongly with increasing filament

heating voltage, and to grow more strongly at low, negative filament bias voltages

and high, negative filament bias voltages than at moderate filament bias voltages.

Measurements of this mode growth as a function of background gas pressure show

a remarkable sensitivity to pressure changes as small as ∆P ≈ 3 × 10−11 Torr (see
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Fig. 5.12), at pressures below P = 1 × 10−9 Torr, but little sensitivity above that

point.

Measurements of ions transiting the trap axially suggest that the ions are re-

sponsible for the clear diocotron mode growth in all of the new mode evolution

measurements. In other devices [KABANTSEV and DRISCOLL, 2003b; PEURRUNG

et al., 1993], transiting ions generated in the filament assembly or the plasma (and

confined between the filament assembly and the density diagnostic) were observed

to destabilize the plasma to them = 1 mode. The ion current generated by the EDG

filament assembly depends very similarly on the filament heating voltage and bias

voltage as the mode growth rate does, but measurements of the ion current as

a function of background gas show that the ion current increases primarily with

time rather than with helium gas pressure. The conclusion from the data is that

the ion production for Vb > 0 V is not as sensitive to the helium or nitrogen gas

pressures as it is to the partial pressure of the gas desorbed from the trap surfaces,

suggesting that the desorbed gas is ionized much more effectively near the fila-

ment than either helium or nitrogen. At high bias voltages (Vb < 30 V), where

the ions are thought to be created by electron impact near the grounded filament

grid as in the other devices, the ion production and therefore the mode growth are

expected to be sensitive to helium and nitrogen partial pressures.

The ion current measurements at high, negative filament bias voltages agree

with the proposed ion-production mechanism of energetic electrons ionizing the

background gas near the acceleration grid, but the source of the ions at low, nega-

tive bias voltages is not explained. Determining the mechanism for ion generation

at low filament bias voltages or a clear way of isolating the plasma from the ions
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may be necessary to predict the m = 1 diocotron mode behavior as a function of

background gas pressure in EDG.



Chapter 6

Conclusions

The new measurements of the EDG plasma expansion and m = 1 diocotron

mode evolution presented in this thesis have greatly illuminated the understand-

ing of the dynamics observed previously in EDG. Better agreement with theoreti-

cal predictions and the experimental findings of other groups have lent credibility

to the experimental results on EDG, and helped reveal the remaining challenges

to our understanding of the effects that neutral gas molecules have on trapped

electron plasmas. New temperature and density diagnostics constructed for this

purpose were critical to the advances made in this research.

6.1 Dependence of the Plasma Expansion Rate on Back-

ground Gas Pressure

The previous measurements of the plasma expansion rates as a function of he-

lium gas pressure made with the Faraday-cup density diagnostic have been ex-

tended to pressures above P = 1 × 10−8 Torr. The expansion rate predicted with

169
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a fluid description of the plasma [DAVIDSON and MOORE, 1996] was shown to

match the new expansion rate data in the pressure range where the minimum

level of plasma expansion was negligible. That minimum level of expansion, in

turn, was shown to be artificially high with the newly implemented phosphor-

screen density diagnostic by measuring the density profile evolution at much later

times. The extended density profile evolutions strongly suggest that the initial

evolution of the plasma at low pressures is a nonlinear relaxation of the plasma to

thermal quasi-equilibrium, a conclusion supported by new measurements of the

plasma temperature evolution at r = 0. The expansion after the plasma has relaxed

to thermal quasi-equilibrium reveals a much lower level of asymmetry-induced

transport in EDG than was previously thought to exist. The agreement between

the theoretically predicted expansion rate derived for plasmas with a spatially-

uniform temperature and the measured rates for plasmas at higher pressures that

are expected to have temperature gradients is rather remarkable. It suggests that

whatever mechanism is responsible for the apparent loss of plasma kinetic energy

may also be suppressing the creation of temperature gradients, that the gradients

that exist may be too small to have a measurable effect on the plasma expansion,

or that including temperature gradients in the fluid theory would not change the

prediction appreciably.

The finding that the plasmas measured with the Faraday-cup density diag-

nostic were not in thermal quasi-equilibrium indicates that the temperatures in-

ferred from those density profiles by fitting them with theoretical, thermal quasi-

equilibrium density profiles are not necessarily representative of the plasma tem-

perature once it reaches quasi-equilibrium. The previous energy analysis, which
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predicted a loss of energy through inelastic collisions with background gas impu-

rities based on these inferred temperatures, is therefore not trustworthy. However,

the newly measured plasma temperatures, observed after the plasma has relaxed

to thermal quasi-equilibrium in the asymmetry-induced expansion regime, also do

not increase as the plasma expands, suggesting that the electrostatic potential en-

ergy liberated as the plasma expands is indeed being lost in part through inelastic

collisions, as suggested previously, and possibly through work done in interac-

tions with the asymmetric fields in the trap. To determine the fate of the liberated

electrostatic potential energy, it would therefore be necessary to determine the con-

stitution of the background gas in the trap using a Residual Gas Analyzer.

It was also found that the plasma temperature measurements disagree with

the temperatures inferred from the density profiles, even for the plasmas thought

to be in thermal quasi-equilibrium. It is not clear whether this is due to errors

in the analysis codes, is a systematic failure of the new diagnostics to accurately

measure the density profiles or temperatures, or is simply a further indication that

the plasma is still not in thermal quasi-equilibrium even late in the evolution. To

clearly resolve whether the plasma is in thermal quasi-equilibrium, a temperature

diagnostic that can measure off-axis temperatures should be implemented to see

whether the plasma relaxes to a constant temperature throughout.

To improve the characterization of the plasma expansion as a function of back-

ground gas pressure in future measurements, there are at least two clear options

available: At the higher background gas pressures, where the plasma currently

expands too quickly to relax to thermal quasi-equilibrium, an additional, rotating-

wall-type electric field might be employed to confine the plasma long enough that

it fully equilibrates before measurements are made. Even with an initially thermal,
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quasi-equilibrium state, a temperature diagnostic that can measure off-axis tem-

peratures would be necessary to fully describe the dynamics at high pressures. At

the lower pressures, the asymmetries in the trap fields could be reduced to allow

expansion rate measurements where the plasmas have time to equilibrate before

they come into contact with the trap electrodes. At these pressures, a Residual

Gas Analyzer would still be needed to ensure that minority gas molecules do not

interfere excessively with the plasma dynamics.

6.2 Dependence of the m=1 Diocotron Mode Growth

Rate on Background Gas Pressure

The m = 1 diocotron mode frequency shifts and instability to resistive trap

electrodes that were seen in other traps were confirmed previously for EDG plas-

mas, and an “anomalous” damping and slight pressure dependence of the mode

damping were also observed. In this thesis work, the evolution of the m = 1

diocotron mode was measured for plasmas with smaller initial radii, and the ob-

served mode growth was found to be quite sensitive to the filament voltages and

the background gas pressure. For example, changes in the mode growth rate for

pressure differences as low as ∆P ≈ 3× 10−11 Torr (N2-equivalent) were observed

using gas desorbed from the trap surfaces to change the pressure. Measurements

of the flow of ions from the filament assembly suggest that ions are present in the

trap at high filament heating voltages, and that they are primarily formed from the

unknown gas molecules desorbed from the inner surfaces of the EDG device as it

is heated by the filament [for low filament bias voltages (Vb > −25V )]. Further-

more, the ion production as a function of filament heating voltage and filament
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bias voltage has a dependence that is very similar to the mode growth dependence

on those parameters, strongly suggesting that transiting ions are responsible for

the mode growth. Similar mode growth due to transient and transiting ions has

been observed and characterized by other groups [KABANTSEV and DRISCOLL,

2003b; PEURRUNG et al., 1993], as well.

To more definitively link the mode growth at high filament heating voltages to

the production of ions, an additional, positively charged trap electrode or grid be-

tween the first confining cylinder and the filament assembly could be introduced.

Alternatively, the bias voltages on the filament or the phosphor screen could be

more quickly varied to see the effects on the mode growth. If ions are clearly shown

to be responsible, an RGA could be used to identify the desorbed gas that is pref-

erentially ionized and steps should taken to either ensure that all gases are ionized

fairly well by the trap (creating, in effect, a highly sensitive ionization gauge) or

to eliminate the ionization (e.g., using a field-emitting array as the electron source,

which would require hardly any heating) to provide ion-free mode dynamics.

The measurements made previously of the mode damping as a function of

background pressure in large-filament plasmas have not been reproduced with

the smaller filament plasmas. It is interesting to consider whether the plasma ex-

pansion is somehow responsible for the mode damping (which could be tested

by intentionally misaligning the magnetic field) or whether some unobserved in-

teraction between the plasma and the trap electrodes caused the damping (which

might require replacement of the large filament to properly diagnose). Using the

new phosphor-screen diagnostic to observe small-filament plasmas, mode damp-

ing at later times has always corresponded to the close proximity between the trap

electrodes and the edge of the plasma, usually with a small, accompanying loss
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in plasma charge. Although measurements of the effects that plasma expansion

has on the mode evolution directly have not been yet been performed, preliminary

measurements suggest that modes driven with a resistive trap electrode do not

cause the plasma to expand more quickly than it does in the absence of the mode.



Appendix A

Electron-neutral collision and

ionization cross-sections1

In this appendix is reproduced several calculations [CHAO, 1999] of the “volu-

metric collision rate” and “volumetric ionization rate” for some of the gases present

in the EDG vacuum chamber. The “volumetric collision rate”

〈σv〉 =
∫ ∞

0
dv σm v P (v), (A.1)

which is important for plasma expansion rate predictions, was calculated for an

electron plasma with an isotropic, Maxwellian particle speed distribution [KITTEL

and KROEMER, 1980]

P (v) = 4π
(
me

2πT

)3/2

v2 exp

(
−mev

2

2T

)
. (A.2)

In Eq. (A.1), the momentum-transfer collision cross section between electrons and

molecules is defined by

σm(E) =
∫
dφ
∫
dθ (1− cos θ)

dσ

dΩ
(E, θ, φ) (A.3)

1This Appendix draws its material entirely from Appendix B of reference [CHAO, 1999].
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where
dσ

dΩ
(E, θ, φ) (A.4)

is the differential scattering cross section, E is the energy of the electron, and θ and

φ denote the spherical-coordinate angles into which the electron scatters, and is

given in the literature [HAYASHI, 1981]. The “volumetric ionization rate” was sim-

ilarly calculated, using the ionization cross sections given in the literature [RAPP

and ENGLANDER-GOLDEN, 1965].
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A.1 Helium

0 20 40 60 80 100
Energy (eV)

10-18

10-17

10-16

10-15

C
ro

ss
 S

ec
tio

n 
(c

m
2 )

Collision

Ionization

(a)

Volumetric Rates

0 2 4 6 8 10
Temperature (eV)

10-14

10-12

10-10

10-8

10-6

<
σv

>
 c

m
3 /s

Collision

Ionization

(b)

Figure A.1: Electron - He momentum transfer collision and ionization (a) cross-
sections and (b) volumetric rates.

Temp. Collision Rate Ionization Rate
(eV) (cm3/s) (cm3/s)

0.5 3.17× 10−8

1.0 4.54× 10−8 1.56× 10−19

1.5 5.44× 10−8 7.42× 10−16

2.0 6.08× 10−8 5.40× 10−14

3.0 6.87× 10−8 4.24× 10−12

4.0 7.27× 10−8 3.97× 10−11

5.0 7.45× 10−8 1.57× 10−10

6.0 7.50× 10−8 4.01× 10−10

7.0 7.47× 10−8 7.96× 10−10

8.0 7.38× 10−8 1.34× 10−9

9.0 7.26× 10−8 2.03× 10−9

10. 7.12× 10−8 2.84× 10−9

Table A.1: Volumetric collision and ionization rates for electrons impacting helium
(He).
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A.2 Molecular Hydrogen
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Figure A.2: Electron - H2 momentum transfer collision and ionization (a) cross-
sections and (b) volumetric rates.

Temp. Collision Rate Ionization Rate
(eV) (cm3/s) (cm3/s)

0.5 7.53× 10−8 4.36× 10−22

1.0 1.07× 10−7 4.38× 10−15

1.5 1.20× 10−7 1.04× 10−12

2.0 1.25× 10−7 1.68× 10−11

3.0 1.25× 10−7 2.91× 10−10

4.0 1.19× 10−7 1.27× 10−9

5.0 1.13× 10−7 3.16× 10−9

6.0 1.06× 10−7 5.89× 10−9

7.0 1.00× 10−7 9.30× 10−9

8.0 9.48× 10−8 1.32× 10−8

9.0 8.97× 10−8 1.74× 10−8

10. 8.50× 10−8 2.18× 10−8

Table A.2: Volumetric collision and ionization rates for electrons impacting molec-
ular hydrogen (H2).
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A.3 Molecular Nitrogen
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Figure A.3: Electron - N2 momentum transfer collision and ionization (a) cross-
sections and (b) volumetric rates.

Temp. Collision Rate Ionization Rate
(eV) (cm3/s) (cm3/s)

0.5 5.15× 10−8 3.37× 10−22

1.0 8.58× 10−8 3.62× 10−15

1.5 1.06× 10−7 9.20× 10−13

2.0 1.18× 10−7 1.59× 10−11

3.0 1.34× 10−7 3.08× 10−10

4.0 1.45× 10−7 1.47× 10−9

5.0 1.53× 10−7 3.94× 10−9

6.0 1.60× 10−7 7.82× 10−9

7.0 1.64× 10−7 1.30× 10−8

8.0 1.68× 10−7 1.93× 10−8

9.0 1.71× 10−7 2.65× 10−8

10. 1.72× 10−7 3.44× 10−8

Table A.3: Volumetric collision and ionization rates for electrons impacting molec-
ular nitrogen (N2).
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